ebook img

Mathematics for the International Student Year 9 IB MYP 4 PDF

576 Pages·15.518 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics for the International Student Year 9 IB MYP 4

HAESE HARRIS PUBLICATIONS & Specialists in mathematics publishing Mathematics for the international student 9 MYP 4 Pamela Vollmar Michael Haese Robert Haese Sandra Haese Mark Humphries for use with IB Middle Years Programme 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\001IB_MYP4_00.CDR Friday, 4 April 2008 1:01:17 PM PETERDELL symbol_pp (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:9) swtimes MATHEMATICSFORTHEINTERNATIONALSTUDENT9(MYP4) PamelaVollmar B.Sc.(Hons.),PGCE. MichaelHaese B.Sc.(Hons.),Ph.D. RobertHaese B.Sc. SandraHaese B.Sc. MarkHumphries B.Sc.(Hons.) Haese&HarrisPublications 3FrankCollopyCourt,AdelaideAirport, SA5950,AUSTRALIA Telephone: +618 83559444, Fax: +618 83559471 Email: [email protected] Web: www.haeseandharris.com.au NationalLibraryofAustraliaCardNumber&ISBN 978-1-876543-29-7 ©Haese&HarrisPublications2008 PublishedbyRaksarNomineesPtyLtd 3FrankCollopyCourt,AdelaideAirport, SA5950,AUSTRALIA FirstEdition 2008 CartoonartworkbyJohnMartin.ArtworkbyPiotrPoturajandDavidPurton. CoverdesignbyPiotrPoturaj. ComputersoftwarebyDavidPurton,ThomasJanssonandTroyCruickshank. TypesetinAustraliabySusanHaese(RaksarNominees).TypesetinTimesRoman10\Qw_/11\Qw_ ThetextbookanditsaccompanyingCDhavebeendevelopedindependentlyoftheInternational BaccalaureateOrganization(IBO).ThetextbookandCDareinnowayconnectedwith,orendorsedby, theIBO. Thisbookiscopyright.ExceptaspermittedbytheCopyrightAct(anyfairdealingforthepurposesof privatestudy,research,criticismorreview),nopartofthispublicationmaybereproduced,storedina retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recordingorotherwise,withoutthepriorpermissionofthepublisher.EnquiriestobemadetoHaese& HarrisPublications. Copyingforeducationalpurposes:WherecopiesofpartorthewholeofthebookaremadeunderPart VBoftheCopyrightAct,thelawrequiresthattheeducationalinstitutionorthebodythatadministersit has given a remuneration notice to Copyright Agency Limited (CAL). For information, contact the CopyrightAgencyLimited. Acknowledgements:ThepublishersacknowledgethecooperationofOxfordUniversityPress,Australia, for the reproduction of material originally published in textbooks produced in association with Haese&HarrisPublications. While every attempt has been made to trace and acknowledge copyright, the authors and publishers apologiseforanyaccidentalinfringementwherecopyrighthasproveduntraceable. Theywouldbepleased tocometoasuitableagreementwiththerightfulowner. Disclaimer:All the internet addresses (URL’s) given in this book were valid at the time of printing. Whiletheauthorsandpublisherregretanyinconveniencethatchangesofaddressmaycausereaders,no responsibilityforanysuchchangescanbeacceptedbyeithertheauthorsorthepublisher. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\002IB_MYP4_00.CDR Friday, 4 April 2008 1:03:17 PM PETERDELL FOREWORD This book may be used as a general textbook at about 9th Grade (or Year 9) level in classes where students are expected to complete a rigorous course in Mathematics. It is the fourth book in our Middle Yearsseries‘MathematicsfortheInternationalStudent’. IntermsoftheIBMiddleYearsProgramme(MYP),ourseriesdoesnotpretendtobeadefinitivecourse. Inresponsetorequestsfromteacherswhouse‘MathematicsfortheInternationalStudent’atIBDiploma level, we have endeavoured to interpret their requirements, as expressed to us, for a series that would prepare students for the Mathematics courses at Diploma level. We have developed the series independently of the International Baccalaureate Organization (IBO) in consultation with experienced teachersofIBMathematics.NeithertheseriesnorthistextisendorsedbytheIBO. Inregardtothisbook,itisnotourintentionthateachchapterbeworkedthroughinfull.Timeconstraints will not allow for this. Teachers must select exercises carefully, according to the abilities and prior knowledge of their students, to make the most efficient use of time and give as thorough coverage of contentaspossible. Toavoidproducingabookthatwouldbetoobulkyforstudents,wehavepresentedsomechaptersonthe CD,asprintablepages: Chapter26:Variation Chapter27:Twovariableanalysis Chapter26:Logic Theabovewereselectedbecausethecontentcouldberegardedasextensionmaterialformost9thGrade (orYear9)students. WeunderstandtheemphasisthattheIBMYPplacesonthefiveAreasofInteractionandinresponsethere are links on the CD to printable pages which offer ideas for projects and investigations to help busy teachers(seep.5). Frequent use of the interactive features on the CD should nurture a much deeper understanding and appreciation of mathematical concepts. The inclusion of our new Self Tutor software (see p. 4) is intendedtohelpstudentswhohavebeenabsentfromclassesorwhoexperiencedifficultyunderstanding thematerial. Thebookcontainsmanyproblemstocaterforarangeofstudentabilitiesandinterests,andeffortshave beenmadetocontextualiseproblemssothatstudentscanseethepracticalapplicationsofthemathematics theyarestudying. Wewelcomeyourfeedback. Email:[email protected] Web:www.haeseandharris.com.au PV,PMH,RCH,SHH,MH Acknowledgements Theauthorsandpublisherswouldliketothankallthoseteacherswhohavereadproofsandofferedadvice andencouragement. AmongthosewhosubmittedcoursesofstudyforMiddleYearsMathematicsandwhoofferedtoreadand commentontheproofsofthetextbookare:MargieKarbassioun,KerstinMockrish,ToddSharpe,Tamara Jannink, Yang Zhaohui, Cameron Hall, Brendan Watson, Daniel Fosbenner, Rob DeAbreu, Philip E. Hedemann,Alessandra Pecoraro, Jeanne-Mari Neefs, Ray Wiens, John Bush, Jane Forrest, DrAndrzej Cichy,William Larson,WendyFarden,ChrisWieland,KennethCapp,SaraLocke,RaeDeeley,ValFrost, Mal Coad, Pia Jeppesen, Wissam Malaeb, Eduardo Betti, Robb Kitcher, Catherine Krylova, Julie Tan, Rosheen Gray, Jan-Mark Seewald, Nicola Cardwell, Tony Halsey, Ros McCabe, Alison Ryan, Mark Bethune, Keith Black, Vivienne Verschuren, Mark Willis, Curtis Wood, Ufuk Genc, Fran O’Connor. SpecialthankstoHeatherFarish.Toanyonewemayhavemissed,weofferourapologies. The publishers wish to make it clear that acknowledging these individuals does not imply any endorsement of this book by any of them, and all responsibility for the content rests with the authors and publishers. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\003IB_MYP4_00.CDR Friday, 4 April 2008 1:54:05 PM PETERDELL USING THE INTERACTIVE CD TheinteractiveCDisidealforindependentstudy. Studentscanrevisitconceptstaughtinclassandundertaketheirown revisionandpractice.TheCDalsohasthetextofthebook,allowing studentstoleavethetextbookatschoolandkeeptheCDathome. Byclickingontherelevanticon,arangeofnewinteractivefeatures canbeaccessed: (cid:2) SelfTutor INTERACTIVE (cid:2) AreasofInteraction linkstoprintablepages LINK (cid:2) PrintableChapters (cid:2) InteractiveLinks–tospreadsheets,videoclips,graphingand geometrysoftware,computerdemonstrationsandsimulations N E SELF TUTOR is a new exciting feature of this book. W! The Self Tutor icon on each worked example denotes an active link on the CD. Simply ‘click’ on the Self Tutor (or anywhere in the example box) to access the worked example, with a teacher’s voice explaining each step necessary to reach the answer. Play any line as often as you like. See how the basic processes come alive using movement and colour on the screen. Ideal for students who have missed lessons or need extra help. Example 2 Self Tutor Simplify by collecting like terms: a ¡a¡1+3a+4 b 5a¡b2+2a¡3b2 a ¡a¡1+3a+4 b 5a¡b2+2a¡3b2 =¡a+3a¡1+4 =5a+2a¡b2¡3b2 =2a+3 =7a¡4b2 f¡a and 3a are like terms f5a and 2a are like terms ¡1 and 4 are like termsg ¡b2 and ¡3b2 are like termsg SeeChapter3,Algebraicexpansionandsimplification,p.73 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\004IB_MYP4_00.CDR Friday, 4 April 2008 2:16:08 PM PETERDELL AREAS OF INTERACTION The International Baccalaureate Middle Years Programme focuses teaching and learning throughfiveAreasofInteraction: (cid:2) Approachestolearning (cid:2) Environments (cid:2) Communityandservice (cid:2) Healthandsocialeducation (cid:2) Humaningenuity TheAreasofInteractionareintendedasafocusfordevelopingconnectionsbetweendifferent subjectareasinthecurriculumandtopromoteanunderstanding Clickontheheadingto oftheinterrelatednessofdifferentbranchesofknowledgeandthe accessaprintable‘pop-up’ coherenceofknowledgeasawhole. versionofthelink. In an effort to assist busy teachers, we offer the following printablepagesofideasforprojectsandinvestigations: CHESS BOARD CALCULATIONS LINKS Areasofinteraction: clickhere Approachestolearning/Humaningenuity Linkstoprintablepagesofideasforprojectsandinvestigations Chapter2:Indices CHESS BOARD CALCULATIONS p.69 Approachestolearning/Humaningenuity Chapter4:Radicals(surds) HOW A CALCULATOR CALCULATES p.99 RATIONAL NUMBERS Humaningenuity Chapter7:Mensuration WHAT SHAPE CONTAINER SHOULDWE USE? p.174 Approachestolearning/Theenvironment Chapter8:Quadraticfactorisation THE GOLDEN RATIO p.191 Humaningenuity Chapter11: Financialmathematics PAYING OFF A MORTGAGE p.265 Healthandsocialeducation Chapter13:Formulae INDUCTION DANGERS p.300 Humaningenuity/Approachestolearning Chapter15:Transformationgeometry WHAT DETERMINES COIN SIZES? p.336 Humaningenuity Chapter17:Simultaneousequations SOLVING 3 BY 3 SYSTEMS p.365 Humaningenuity Chapter19:Quadraticfunctions MAXIMISING AREAS OFENCLOSURES p.401 Humaningenuity/Theenvironment Chapter20:Treediagramsandbinomial WHY CASINOS ALWAYS WIN probabilities p.416 Healthandsocialeducation Chapter22:Otherfunctions:theirgraphs CARBON DATING anduses p.450 Theenvironment Chapter24:Deductivegeometry FINDING THE CENTRE OF A CIRCLE p.498 Approachestolearning 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\005IB_MYP4_00.CDR Friday, 4 April 2008 2:22:18 PM PETERDELL 6 TABLEOFCONTENTS TABLE OF CONTENTS GRAPHICSCALCULATOR 4 RADICALS(SURDS) 87 INSTRUCTIONS 9 A Radicalsonanumberline 88 A Basiccalculations 10 B Operationswithradicals 89 B Basicfunctions 12 C Expansionswithradicals 93 C Secondaryfunctionandalphakeys 15 D Divisionbyradicals 96 D Memory 15 Reviewset4A 99 E Lists 18 Reviewset4B 100 F Statisticalgraphs 20 5 SETSANDVENNDIAGRAMS 101 G Workingwithfunctions 21 H Matrices 25 A Sets 102 I Twovariableanalysis 27 B Specialnumbersets 104 C Setbuildernotation 105 1 ALGEBRA(NOTATIONAND D Complementofsets 106 EQUATIONS) 29 E Venndiagrams 108 Reviewset5A 115 A Algebraicnotation 30 Reviewset5B 116 B Algebraicsubstitution 32 C Linearequations 34 6 COORDINATEGEOMETRY 117 D Rationalequations 38 E Linearinequations 40 A Thedistancebetweentwopoints 119 F Problemsolving 43 B Midpoints 122 G Moneyandinvestmentproblems 45 C Gradient(orslope) 124 H Motionproblems 47 D Usinggradients 128 I Mixtureproblems 48 E Usingcoordinategeometry 129 Reviewset1A 49 F Verticalandhorizontallines 131 Reviewset1B 50 G Equationsofstraightlines 132 H Thegeneralformofaline 136 2 INDICES 51 I Pointsonlines 138 J Wherelinesmeet 139 A Indexnotation 52 Reviewset6A 141 B Indexlaws 55 Reviewset6B 142 C Exponentialequations 61 D Scientificnotation(Standardform) 63 7 MENSURATION 145 E Rational(fractional)indices 66 Reviewset2A 69 A Error 147 Reviewset2B 70 B Lengthandperimeter 149 C Area 156 3 ALGEBRAICEXPANSIONAND D Surfacearea 162 SIMPLIFICATION 71 E Volumeandcapacity 167 Reviewset7A 174 A Collectingliketerms 72 Reviewset7B 175 B Productnotation 73 C Thedistributivelaw 75 8 QUADRATICFACTORISATION 177 D Theproduct (a(cid:10)(cid:11)(cid:10)b)(c(cid:10)(cid:11)(cid:10)d) 76 E Differenceoftwosquares 78 A Factorisationbyremovalofcommon factors 178 F Perfectsquaresexpansion 80 B Differenceoftwosquaresfactorisation 180 G Furtherexpansion 82 C Perfectsquarefactorisation 182 H Thebinomialexpansion 84 D Factorisingexpressionswithfourterms 183 Reviewset3A 85 E Quadratictrinomialfactorisation 184 Reviewset3B 86 F Miscellaneousfactorisation 186 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\006IB_MYP4_00.CDR Friday, 4 April 2008 2:18:36 PM PETERDELL TABLEOFCONTENTS 7 G Factorisationof axX(cid:10)(cid:11)(cid:10)bx(cid:10)(cid:11)(cid:10)c,(cid:10)(cid:10)a(cid:10)(cid:10)(cid:12)(cid:10)(cid:13) 186 14 COMPARINGNUMERICALDATA 303 Reviewset8A 191 A Graphicalcomparison 304 Reviewset8B 191 B Parallelboxplots 306 C Astatisticalproject 311 9 STATISTICS 193 Reviewset14A 312 A Discretenumericaldata 195 Reviewset14B 313 B Continuousnumericaldata 199 C Measuringthemiddleofadataset 201 15 TRANSFORMATIONGEOMETRY 315 D Measuringthespreadofdata 206 A Translations 318 E Box-and-whiskerplots 209 B Rotations 320 F Groupedcontinuousdata 212 C Reflections 324 G Cumulativedata 214 D Enlargementsandreductions 329 Reviewset9A 217 E Tessellations 333 Reviewset9B 217 Reviewset15A 337 Reviewset15B 338 10 PROBABILITY 219 A Experimentalprobability 221 16 QUADRATICEQUATIONS 339 B Probabilitiesfromdata 222 A Quadraticequationsoftheform xX(cid:10)(cid:14)(cid:10)k 341 C Lifetables 224 B TheNullFactorlaw 342 D Samplespaces 226 C Solutionbyfactorisation 343 E Theoreticalprobability 227 D Completingthesquare 346 F Using2-dimensionalgrids 229 E Problemsolving 349 G Compoundevents 230 Reviewset16A 351 H EventsandVenndiagrams 233 Reviewset16B 352 I Expectation 237 Reviewset10A 239 17 SIMULTANEOUSEQUATIONS 353 Reviewset10B 240 A Linearsimultaneousequations 354 11 FINANCIALMATHEMATICS 241 B Problemsolving 358 C Non-linearsimultaneousequations 362 A Businesscalculations 242 Reviewset17A 365 B Appreciation 248 Reviewset17B 365 C Compoundinterest 250 D Depreciation 255 18 MATRICES 367 E Borrowing 258 A Matrixsizeandconstruction 368 Reviewset11A 265 B Matrixequality 371 Reviewset11B 265 C Additionandsubtractionofmatrices 372 12 TRIGONOMETRY 267 D Scalarmultiplication 375 E Matrixmultiplication 376 A Usingscalediagrams 268 F Matricesusingtechnology 378 B Labellingtriangles 269 Reviewset18A 380 C Thetrigonometricratios 270 Reviewset18B 381 D Trigonometricproblemsolving 275 E Bearings 279 19 QUADRATICFUNCTIONS 383 F 3-dimensionalproblemsolving 282 A Quadraticfunctions 384 Reviewset12A 285 B Graphsofquadraticfunctions 387 Reviewset12B 286 C Usingtransformationstosketchquadratics391 13 FORMULAE 289 D Graphingbycompletingthesquare 393 E Axesintercepts 394 A Substitutingintoformulae 290 F Quadraticgraphs 397 B Rearrangingformulae 293 G Maximumandminimumvalues C Constructingformulae 295 ofquadratics 399 D Formulaebyinduction 298 Reviewset19A 401 Reviewset13A 301 Reviewset19B 402 Reviewset13B 302 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\007IB_MYP4_00.CDR Friday, 4 April 2008 2:19:00 PM PETERDELL 8 TABLEOFCONTENTS 20 TREEDIAGRAMSAND 25 NON-RIGHTANGLEDTRIANGLE BINOMIALPROBABILITIES 403 TRIGONOMETRY 501 A Samplespacesusingtreediagrams 404 A Theunitquartercircle 502 B Probabilitiesfromtreediagrams 405 B Obtuseangles 505 C Binomialprobabilities 411 C Areaofatriangleusingsine 507 Reviewset20A 416 D Thesinerule 508 Reviewset20B 417 E Thecosinerule 512 F Problemsolvingwiththesineand 21 ALGEBRAICFRACTIONS 419 cosinerules 514 A Evaluatingalgebraicfractions 420 Reviewset25A 516 B Simplifyingalgebraicfractions 421 Reviewset25B 517 C Multiplyinganddividingalgebraic 26 VARIATION CD fractions 427 D Addingandsubtractingalgebraic A Directvariation CD fractions 429 B Inversevariation CD E Morecomplicatedfractions 432 Reviewset26A CD Reviewset21A 433 Reviewset26B CD Reviewset21B 434 27 TWOVARIABLEANALYSIS CD 22 OTHERFUNCTIONS: THEIR A Correlation CD GRAPHSANDUSES 435 B Pearson’scorrelationcoefficient,r CD A Exponentialfunctions 436 C Lineofbestfitbyeye CD B Graphingsimpleexponentialfunctions 437 D Linearregression CD C Growthproblems 440 Reviewset27A CD D Decayproblems 442 Reviewset27B CD E Simplerationalfunctions 444 F Optimisationwithrationalfunctions 447 28 LOGIC CD G Unfamiliarfunctions 449 A Propositions CD Reviewset22A 450 B Compoundstatements CD Reviewset22B 451 C Constructingtruthtables CD Reviewset28A CD 23 VECTORS 453 Reviewset28B CD A Vectorrepresentation 455 B Lengthsofvectors 456 ANSWERS 523 C Equalvectors 458 INDEX 573 D Vectoraddition 459 E Multiplyingvectorsbyanumber 463 F Vectorsubtraction 465 G Thedirectionofavector 467 H Problemsolvingbyvectoraddition 469 Reviewset23A 471 Reviewset23B 472 24 DEDUCTIVEGEOMETRY 473 A Reviewoffactsandtheorems 475 B Circletheorems 479 C Congruenttriangles 485 D Similartriangles 488 E Problemsolvingwithsimilartriangles 492 F Themidpointtheorem 494 G Euler’srule 496 Reviewset24A 498 Reviewset24B 499 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00\008IB_MYP4_00.CDR Saturday, 12 April 2008 9:25:54 AM PETERDELL Graphics calculator instructions Contents: A Basic calculations B Basic functions C Secondary function and alpha keys D Memory E Lists F Statistical graphs G Working with functions H Matrices I Two variable analysis 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00a\009IB_MYP4_00a.CDR Monday, 7 April 2008 9:38:08 AM TROY 10 GRAPHICSCALCULATORINSTRUCTIONS In this courseit is assumedthat you have a graphicscalculator. If you learnhow to operate your calculator successfully, you should experience little difficulty with future arithmetic calculations. There are many different brands (and types) of calculators. Different calculatorsdo not have exactly the same keys. It is thereforeimportantthat you have an instructionbooklet for your calculator, and use it whenever you need to. However,tohelpgetyoustarted,wehaveincludedheresomebasicinstructionsfortheTexas Instruments TI-83 and the Casio fx-9860G calculators. Note that instructions given may need to be modified slightly for other models. GETTING STARTED Texas Instruments TI-83 Thescreenwhichappearswhenthecalculatoristurnedonisthehomescreen. Thisiswhere most basic calculations are performed. You can return to this screen from any menu by pressing 2nd MODE . Whenyouare onthisscreenyoucantypein anexpressionandevaluateitusingthe ENTER key. Casio fx-9860g Press MENU to access the Main Menu, and select RUN¢MAT. This is where most of the basic calculations are performed. When you are on this screen you can type in an expression and evaluate it using the EXE key. A BASIC CALCULATIONS Most modern calculatorshave the rules for Orderof Operationsbuilt into them. This order is sometimes referred to as BEDMAS. This section explains how to enter different types of numbers such as negative numbers and fractions, and how to perform calculations using grouping symbols (brackets), powers, and square roots. It also explains how to round off using your calculator. NEGATIVE NUMBERS To enter negative numbers we use the sign change key. On both the TI-83 and Casio this looks like (¡) . Simply press the sign change key and then type in the number. For example, to enter ¡7, press (¡) 7. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB MYP_4 cyan magenta yellow black Y:\HAESE\IB_MYP4\IB_MYP4_00a\010IB_MYP4_00a.CDR Thursday, 3 April 2008 4:19:57 PM PETERDELL

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.