HAESE HARRIS PUBLICATIONS & Specialists in mathematics publishing Mathematics for the international student Pre-Diploma SL and HL (MYP 5 Plus) second edition Presumed Knowledge for SL and HL courses Pamela Vollmar Edward Kemp Michael Haese Robert Haese Sandra Haese Mark Humphries Chris Sangwin for use with IB Middle Years Programme 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black Y:\HAESE\IB_MYP5_PLUS-2ed\IB_10P-2ed_00\001IB_10P-2_00.CDR Tuesday, 26 February 2008 9:00:30 AM PETERDELL symbol_pp (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:9) swtimes MATHEMATICSFORTHEINTERNATIONALSTUDENT Pre-DiplomaSLandHL(MYP5Plus)secondedition PresumedKnowledgeforSLandHLcourses PamelaVollmar B.Sc.(Hons.),PGCE. EdwardKemp B.Sc.,M.A. MichaelHaese B.Sc.(Hons.),Ph.D. RobertHaese B.Sc. SandraHaese B.Sc. MarkHumphries B.Sc.(Hons.) ChrisSangwin M.A.,M.Sc.,Ph.D. HaeseMathematics 3FrankCollopyCourt,AdelaideAirport, SA5950,AUSTRALIA Telephone: +618 83559444, Fax: +618 83559471 Email: [email protected] Web: www.haesemathematics.com.au NationalLibraryofAustraliaCardNumber&ISBN 978-1-876543-89-1 ©Haese&HarrisPublications2008 PublishedbyRaksarNomineesPtyLtd 3FrankCollopyCourt,AdelaideAirport, SA5950,AUSTRALIA FirstEdition 2006 SecondEdition 2008 Reprinted 2008,2010,2011,2012 CartoonartworkbyJohnMartin.ArtworkbyPiotrPoturajandDavidPurton. CoverdesignbyPiotrPoturaj. ComputersoftwarebyDavidPurton,ThomasJanssonandTroyCruickshank. TypesetinAustraliabySusanHaese(RaksarNominees).TypesetinTimesRoman10\Qw_/11\Qw_ ThetextbookanditsaccompanyingCDhavebeendevelopedindependentlyoftheInternational BaccalaureateOrganization(IBO).ThetextbookandCDareinnowayconnectedwith,orendorsedby, theIBO. Thisbookiscopyright.ExceptaspermittedbytheCopyrightAct(anyfairdealingforthepurposesof privatestudy,research,criticismorreview),nopartofthispublicationmaybereproduced,storedina retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Enquiries to be made to Haese Mathematics. Copyingforeducationalpurposes:WherecopiesofpartorthewholeofthebookaremadeunderPart VBoftheCopyrightAct,thelawrequiresthattheeducationalinstitutionorthebodythatadministersit has given a remuneration notice to Copyright Agency Limited (CAL). For information, contact the CopyrightAgencyLimited. Acknowledgements:ThepublishersacknowledgethecooperationofOxfordUniversityPress,Australia, for the reproduction of material originally published in textbooks produced in association with Haese&HarrisPublications. While every attempt has been made to trace and acknowledge copyright, the authors and publishers apologiseforanyaccidentalinfringementwherecopyrighthasproveduntraceable. Theywouldbepleased tocometoasuitableagreementwiththerightfulowner. Disclaimer: All the internet addresses (URLs) given in this book were valid at the time of printing. Whiletheauthorsandpublisherregretanyinconveniencethatchangesofaddressmaycausereaders,no responsibilityforanysuchchangescanbeacceptedbyeithertheauthorsorthepublisher. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black V:\BOOKS\IB_books\IB_MYP5plus-2ed\IB_MYP5plus-2ed_00\002IB_MYP5plus-2_00.CDR Tuesday, 3 July 2012 12:54:58 PM EMMA FOREWORD Pre-DiplomaSLandHL(MYP5Plus)secondeditionisanattempttocover,inonevolume,thePresumed Knowledge required for the IB Diploma courses ‘Mathematics SL’and ‘Mathematics HL’. This book may also be used as a general textbook at about 10th Grade level in classes where students complete a rigorous courseinpreparationforthestudyofmathematicsatahighlevelintheirfinaltwoyearsofhighschool. Feedback from teachers using the first edition suggested that while it provided satisfactory preparation for prospective Mathematics SL students, several sections needed to be more rigorous to prepare students thoroughlyforMathematicsHL.Thefirsteditionhasbeenrevisedthroughoutandthehighlightedtopicsin thetableofcontentsshowataglancethemainareasthathavebeensubstantiallyrevisedandextended. IntermsoftheIBMiddleYearsProgramme(MYP),thisbookdoesnotpretendtobeadefinitivecourse.In responsetorequestsfromteacherswhouse‘MathematicsfortheInternationalStudent’atIBDiplomalevel, wehaveendeavouredtointerprettheirrequirements,asexpressedtous,forabookthatwillpreparestudents for Mathematics SLand Mathematics HL.We have developed this book independently of the International Baccalaureate Organization (IBO) in consultation with experienced teachers of IB Mathematics.The text is notendorsedbytheIBO. Itisnotourintentionthateachchapterbeworkedthroughinfull.Teachersmustselectcarefully,accordingto the abilities and prior knowledge of their students, to make the most efficient use of time and give as thoroughcoverageofcontentaspossible. ThreeadditionalchaptersappearontheCDasprintablepages: Chapter23:Countingandprobability Chapter24:Locus Chapter25:Networks Thesechapterswereselectedbecausethecontentcouldberegardedasextensionbeyondwhatmightbeseen asanessentialprerequisiteforIBDiplomamathematics. WeunderstandtheemphasisthattheIBMYPplacesonthefiveAreasofInteractionandinresponsethere arelinksontheCDtoprintablepageswhichofferideasforprojectsandinvestigationstohelpbusyteachers (seep.5). Frequent use of the interactive features on the CD should nurture a much deeper understanding and appreciationofmathematicalconcepts.Theinclusionofournew Self Tutor software(seep.4)isintendedto helpstudentswhohavebeenabsentfromclassesorwhoexperiencedifficultyunderstandingthematerial. Thebookcontainsmanyproblemstocaterforarangeofstudentabilitiesandinterests,andeffortshavebeen madetocontextualiseproblemssothatstudentscanseethepracticalapplicationsofthemathematicstheyare studying. Wewelcomeyourfeedback. Email:[email protected] Web:www.haesemathematics.com.au PV,EK,PMH,RCH,SHH,MH,CS Acknowledgements The authors and publishers would like to thank all those teachers who have read proofs and offered advice andencouragement. Among those who submitted courses of study for MiddleYears Mathematics and who offered to read and comment on the proofs of the textbook are: Margie Karbassioun, Kerstin Mockrish, Todd Sharpe, Tamara Jannink, Yang Zhaohui, Cameron Hall, Brendan Watson, Daniel Fosbenner, Rob DeAbreu, Philip E. Hedemann,AlessandraPecoraro,Jeanne-MariNeefs,RayWiens,JohnBush,JaneForrest,DrAndrzejCichy, William Larson, Wendy Farden, Chris Wieland, Kenneth Capp, Sara Locke, Rae Deeley, Val Frost, Mal Coad, Pia Jeppesen, Wissam Malaeb, Eduardo Betti, Robb Kitcher, Catherine Krylova, Julie Tan, Rosheen Gray, Jan-Mark Seewald, Nicola Cardwell, Tony Halsey, Ros McCabe,Alison Ryan, Mark Bethune, Keith Black, Vivienne Verschuren, Mark Willis, Curtis Wood, Ufuk Genc, Fran O’Connor. Special thanks to HeatherFarish.Toanyonewemayhavemissed,weofferourapologies. Thepublisherswishtomakeitclearthatacknowledgingtheseindividualsdoesnotimplyanyendorsementof thisbookbyanyofthem,andallresponsibilityforthecontentrestswiththeauthorsandpublishers. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black V:\BOOKS\IB_books\IB_MYP5plus-2ed\IB_MYP5plus-2ed_00\003IB_MYP5plus-2_00.cdr Thursday, 28 July 2011 9:13:38 AM BEN USING THE INTERACTIVE CD TSrsetthuvuedidseieinnonttnetssrtaaconcaldtneivapreveraevCcitDsthiicetiescte.oidxTnethcbaeeolpoCftoksDratiatanusldsgceohhpotheoiannlsdactenhlnadetskstseteauxendtpdyot.fhuenthdCeeDrbtoaaoktkeh,otahmleleior.woiwnng teprashc(cid:129)noArisenaestxofeInteracssMMtioeenin(cid:129)cccsYYltoouatdinnsetSPPiMMcsddsepl55aeefck ddaTPPgiiuesaattlltiiuu(cid:129)ooognnIIrssrNNattpTThiEEnhhRRgAAanCCdTTeegIIeVVoEEmmmeSStrTTyUUsoDDftEEwaaNNareTT(cid:129)CCiDDttPPnSSstrrruLLiiceetio--ccnaaDDsfonnssriigrppddaphlli©csooHHcal2cmmul0ato1LLrs1aa(cid:129)demsonnoisttralatuiominss(cid:129) Byclickingontherelevanticon,arangeofnewinteractivefeatures ffoorr uussee wwiitthh tthhee IIBB MMiiddddlleeYYeeaarrssPPrrooggrraammmmee canbeaccessed: (cid:2) SelfTutor INTERACTIVE (cid:2) AreasofInteraction linkstoprintablepages LINK (cid:2) PrintableChapters (cid:2) InteractiveLinks–tospreadsheets,videoclips,graphingand geometrysoftware,computerdemonstrationsandsimulations N E SELF TUTOR is a new exciting feature of this book. W! The Self Tutor icon on each worked example denotes an active link on the CD. Simply ‘click’on the Self Tutor (or anywhere in the example box) to access the worked example, with a teacher’s voice explaining each step necessary to reach the answer. Play any line as often as you like. See how the basic processes come alive using movement and colour on the screen. Ideal for students who have missed lessons or need extra help. Example 7 Self Tutor Sketch each of the following functions on the same set of axes as y = x2. In each case state the coordinates of the vertex. a y =(x¡2)2+3 b y =(x+2)2¡5 a We draw y =x2 and translate it b We draw y =x2 and translate it µ ¶ µ ¶ 2 ¡2 by . by . 3 ¡5 y y @\=\(!\-\2)X\+\3 @\=\!X @\=\!X (cid:10)2 x (cid:11)3 x @\=\(!\+\2)X\-\5 (cid:10)5 (cid:11)2 The vertex is at (2, 3). The vertex is at (¡2, ¡5). SeeChapter17,Quadraticfunctions,p.421 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black V:\BOOKS\IB_books\IB_MYP5plus-2ed\IB_MYP5plus-2ed_00\004IB_MYP5plus-2_00.cdr Thursday, 28 July 2011 10:43:02 AM BEN AREAS OF INTERACTION The International Baccalaureate Middle Years Programme focuses teaching and learning throughfiveAreasofInteraction: (cid:2) Approachestolearning (cid:2) Environments (cid:2) Communityandservice (cid:2) Healthandsocialeducation (cid:2) Humaningenuity TheAreasofInteractionareintendedasafocusfordevelopingconnectionsbetweendifferent subjectareasinthecurriculumandtopromoteanunderstanding Clickontheheadingto oftheinterrelatednessofdifferentbranchesofknowledgeandthe accessaprintable‘pop-up’ coherenceofknowledgeasawhole. versionofthelink. In an effort to assist busy teachers, we offer the following printablepagesofideasforprojectsandinvestigations: SATISFYING PAPER PROPORTIONS LINKS Areasofinteraction: clickhere Approachestolearning/Environments/Humaningenuity Linkstoprintablepagesofideasforprojectsandinvestigations Chapter3:Radicalsandsurds SATISFYING PAPER PROPORTIONS p.77 Approachestolearning/Environments/Humaningenuity Chapter5:Coordinategeometry WHERE DOES THE FIGHTER CROSS THE COAST? p.130 Humaningenuity Chapter6:Congruenceandsimilarity THE USE OF MODELLING p.152 Approachestolearning Chapter7:Transformationgeometry TRANSFORMING ART p.167 Environments/Humaningenuity Chapter8:Univariatedataanalysis DECODING A SECRET MESSAGE p.209 Humaningenuity Chapter9:Quadraticequations MINIMISING THE COSTS p.231 Environments/Humaningenuity Chapter10:Trigonometry WHERE ARE WE? p.264 Approachestolearning/Humaningenuity Chapter11:Probability WHAT ARE YOUR SURVIVAL PROSPECTS? p.292 Communityservice/Healthandsocialeducation Chapter13:Formulae HOW MUCH DO WE HAVE LEFT? p.323 Humaningenuity Chapter14:Relations,functionsand FIBONACCI sequences p.353 Humaningenuity Chapter16:Exponentialfunctions EARTHQUAKES andlogarithms p.410 Environments/Humaningenuity Chapter18:Advancedtrigonometry IN TUNE WITH TRIGONOMETRY p.460 Humaningenuity Chapter20:Matricesandlinear HILL CIPHERS transformations p.504 Approachestolearning/Humaningenuity Chapter22:Introductiontocalculus ARCHIMEDES’ NESTED CYLINDER, HEMISPHERE AND CONE p.548 Approachestolearning/Humaningenuity 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black Y:\HAESE\IB_MYP5_PLUS-2ed\IB_10P-2ed_00\005IB_10P-2_00.CDR Tuesday, 26 February 2008 2:39:27 PM PETERDELL 6 TABLEOFCONTENTS TABLE OF CONTENTS Contenthasbeenrevisedthroughoutandthehighlighted areasshowthetopicsthathavebeensubstantiallyrevised andextendedinthissecondedition. GRAPHICSCALCULATOR F Moredifficultproblems(Extension) 98 INSTRUCTIONS 9 Reviewset4A 100 Reviewset4B 101 A Basiccalculations 10 B Basicfunctions 12 5 COORDINATEGEOMETRY 103 C Secondaryfunctionandalphakeys 15 D Memory 15 A Distancebetweentwopoints 105 E Lists 18 B Midpoints 108 F Statisticalgraphs 20 C Gradient(orslope) 110 G Workingwithfunctions 21 D Usingcoordinategeometry 116 E Equationsofstraightlines 118 1 SETSANDVENNDIAGRAMS 29 F Distancefromapointtoaline 127 G 3-dimensionalcoordinategeometry A Numbersets 30 (Extension) 129 B Intervalnotation 32 Reviewset5A 130 C Venndiagrams 33 Reviewset5B 131 D Unionandintersection 36 E ProblemsolvingwithVenndiagrams 40 6 CONGRUENCEAND F Thealgebraofsets(Extension) 42 SIMILARITY 133 Reviewset1A 43 Reviewset1B 44 A Congruenceoffigures 134 B Constructingtriangles 135 2 ALGEBRAICEXPANSION C Congruenttriangles 137 ANDFACTORISATION 45 D Similarity 146 E Areasandvolumesofsimilarfigures 150 A Revisionofexpansionlaws 46 Reviewset6A 152 B Revisionoffactorisation 48 Reviewset6B 153 C Furtherexpansion 50 D Thebinomialexpansion 51 7 TRANSFORMATIONGEOMETRY 155 E Factorisingexpressionswithfourterms 54 F Factorisingquadratictrinomials 55 A Translations 157 G Factorisationbysplitting 57 B Reflections 158 H Miscellaneousfactorisation 60 C Rotations 160 Reviewset2A 61 D Dilations 162 Reviewset2B 62 Reviewset7A 167 Reviewset7B 168 3 RADICALSANDSURDS 63 8 UNIVARIATEDATAANALYSIS 169 A Basicoperationswithradicals 65 B Propertiesofradicals 67 A Statisticalterminology 171 C Multiplicationofradicals 70 B Quantitative(numerical)data 176 D Divisionbyradicals 72 C Groupeddiscretedata 179 E Equalityofsurds 74 D Continuousdata 181 Reviewset3A 77 E Measuringthecentre 184 Reviewset3B 78 F Cumulativedata 191 G Measuringthespread 194 4 PYTHAGORAS’THEOREM 79 H Box-and-whiskerplots 196 I Statisticsfromtechnology 200 A Pythagoras’theorem 81 J Standarddeviation 202 B TheconverseofPythagoras’theorem 85 K Thenormaldistribution 206 C ProblemsolvingusingPythagoras’theorem 88 Reviewset8A 209 D Circleproblems 93 Reviewset8B 211 E Three-dimensionalproblems 96 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black Y:\HAESE\IB_MYP5_PLUS-2ed\IB_10P-2ed_00\006IB_10P-2_00.CDR Tuesday, 26 February 2008 2:40:46 PM PETERDELL TABLEOFCONTENTS 7 9 QUADRATICEQUATIONS 213 14 RELATIONS,FUNCTIONSAND A Quadraticequationsoftheform xX(cid:12)(cid:13)(cid:12)k 215 SEQUENCES 325 B Solutionbyfactorisation 216 A Relationsandfunctions 326 C Completingthesquare 220 B Functions 329 D Problemsolving 222 C Functionnotation 331 E Thequadraticformula 227 D Compositefunctions 334 Reviewset9A 231 E Transforming y(cid:12)(cid:13)(cid:12)(cid:14)(x) 335 Reviewset9B 232 F Inversefunctions 337 G Themodulusfunction 340 10 TRIGONOMETRY 233 H Wherefunctionsmeet 343 A Trigonometricratios 235 I Numbersequences 344 B Trigonometricproblemsolving 240 J Recurrencerelationships 350 C 3-dimensionalproblemsolving 246 Reviewset14A 354 D Theunitcircle 250 Reviewset14B 355 E Areaofatriangleusingsine 252 15 VECTORS 357 F Thesinerule 255 G Thecosinerule 257 A Directedlinesegmentrepresentation 358 H Problemsolvingwiththesine B Vectorequality 360 andcosinerules 259 C Vectoraddition 361 I Trigonometricidentities(Extension) 261 D Vectorsubtraction 365 Reviewset10A 264 E Vectorsincomponentform 367 Reviewset10B 265 F Scalarmultiplication 371 G Vectorequations 373 11 PROBABILITY 267 H Parallelismofvectors 374 A Experimentalprobability 269 I Thescalarproductoftwovectors 376 B Probabilitiesfromtableddata 271 J Vectorproof(Extension) 380 C Representingcombinedevents 272 Reviewset15A 382 D Theoreticalprobability 274 Reviewset15B 384 E Compoundevents 277 16 EXPONENTIALFUNCTIONS F Usingtreediagrams 280 G Samplingwithandwithoutreplacement 283 ANDLOGARITHMS 385 H Mutuallyexclusiveandnon-mutually A Indexlaws 386 exclusiveevents 285 B Rational(fractional)indices 389 I Venndiagramsandconditionalprobability 287 C Exponentialfunctions 391 Reviewset11A 292 D Growthanddecay 393 Reviewset11B 293 E Compoundinterest 395 F Depreciation 398 12 ALGEBRAICFRACTIONS 295 G Exponentialequations 400 A Simplifyingalgebraicfractions 296 H Expansionandfactorisation 401 B Multiplyinganddividingalgebraic I Logarithms 404 fractions 300 Reviewset16A 410 C Addingandsubtractingalgebraic Reviewset16B 411 fractions 302 D Morecomplicatedfractions 305 17 QUADRATICFUNCTIONS 413 Reviewset12A 307 A Quadraticfunctions 414 Reviewset12B 308 B Graphsofquadraticfunctions 416 C Axesintercepts 425 13 FORMULAE 309 D Axisofsymmetryandvertex 429 A Formulasubstitution 310 E Quadraticoptimisation 433 B Formularearrangement 313 Reviewset17A 435 C Formulaconstruction 315 Reviewset17B 436 D Formulaebyinduction 318 E Moredifficultrearrangements 320 18 ADVANCEDTRIGONOMETRY 437 Reviewset13A 323 A Radianmeasure 438 Reviewset13B 324 B Trigonometricratiosfromtheunitcircle 441 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black Y:\HAESE\IB_MYP5_PLUS-2ed\IB_10P-2ed_00\007IB_10P-2_00.CDR Tuesday, 26 February 2008 2:14:40 PM PETERDELL 8 TABLEOFCONTENTS C Themultiplesof30ºand45º 444 23 COUNTINGANDPROBABILITY CD D Graphingtrigonometricfunctions 448 A Theproductandsumprinciples CD E Modellingwithsinefunctions 451 B Countingpermutations CD F Trigonometricequations 454 C Factorialnotation CD G Negativeandcomplementaryangle D Countingwithcombinations CD formulae 457 E Probabilitiesusingpermutations H Additionformulae 458 andcombinations CD Reviewset18A 461 F Thehypergeometricdistribution CD Reviewset18B 462 Reviewset23A CD Reviewset23B CD 19 INEQUALITIES 463 A Signdiagrams 464 24 LOCUS CD B Intervalnotation 468 A Locus CD C Inequalities 471 B Circles CD D Thearithmeticmean-geometricmean C Ellipses CD inequality(Extension) 473 D Otherlocusproblems(Extension) CD Reviewset19A 476 Reviewset24A CD Reviewset19B 476 Reviewset24B CD 20 MATRICESANDLINEAR 25 NETWORKS CD TRANSFORMATIONS 477 A Networkdiagrams CD A Introductiontomatrices 478 B Isomorphismandadjacencymatrices CD B Operationswithmatrices 480 C Directednetworks CD C Matrixmultiplication 484 D Problemsolvingwithnetworks CD D Thedeterminantofamatrix 487 Reviewset25A CD E Multiplicativeidentityandinverse Reviewset25B CD matrices 489 F Simultaneousequations 491 ANSWERS 555 G Lineartransformations 494 H Proofswith(cid:15)(cid:12)(cid:16)(cid:12)(cid:15)matrices(Extension) 503 INDEX 606 Reviewset20A 504 Reviewset20B 505 21 DEDUCTIVEGEOMETRY 507 A Circletheorems 509 B Furthercircletheorems 513 C Geometricproof 517 D Cyclicquadrilaterals 521 Reviewset21A 526 Reviewset21B 527 22 INTRODUCTIONTOCALCULUS 529 A Estimatinggradientsoftangentstocurves 530 B Gradientsusingquadratictheory 531 C Gradientsusinglimittheory 532 D Differentiation 535 E Optimisation 540 F Areasundercurves 543 G Integration 545 H Thedefiniteintegral 547 Reviewset22A 549 Reviewset22B 550 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black Y:\HAESE\IB_MYP5_PLUS-2ed\IB_10P-2ed_00\008IB_10P-2_00.CDR Tuesday, 26 February 2008 2:14:08 PM PETERDELL Graphics calculator instructions Contents: A Basic calculations B Basic functions C Secondary function and alpha keys D Memory E Lists F Statistical graphs G Working with functions 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black Y:\HAESE\IB_10_PLUS-2ed\IB_10P-2ed_00a\009IB_10P-2_00a.CDR Wednesday, 23 January 2008 4:45:56 PM PETERDELL 10 GRAPHICSCALCULATORINSTRUCTIONS In this courseit is assumedthat you have a graphicscalculator. If you learnhow to operate your calculator successfully, you should experience little difficulty with future arithmetic calculations. There are many different brands (and types) of calculators. Different calculatorsdo not have exactly the same keys. It is thereforeimportantthat you have an instructionbooklet for your calculator, and use it whenever you need to. However,tohelpgetyoustarted,wehaveincludedheresomebasicinstructionsfortheTexas Instruments TI-83 and the Casio fx-9860G calculators. Note that instructions given may need to be modified slightly for other models. GETTING STARTED Texas Instruments TI-83 Thescreenwhichappearswhenthecalculatoristurnedonisthehomescreen. Thisiswhere most basic calculations are performed. You can return to this screen from any menu by pressing 2nd MODE . Whenyouare onthisscreenyoucantypein anexpressionandevaluateitusingthe ENTER key. Casio fx-9860g Press MENU to access the Main Menu, and select RUN¢MAT. This is where most of the basic calculations are performed. When you are on this screen you can type in an expression and evaluate it using the EXE key. A BASIC CALCULATIONS Most modern calculatorshave the rules for Orderof Operationsbuilt into them. This order is sometimes referred to as BEDMAS. This section explains how to enter different types of numbers such as negative numbers and fractions, and how to perform calculations using grouping symbols (brackets), powers, and square roots. It also explains how to round off using your calculator. NEGATIVE NUMBERS To enter negative numbers we use the sign change key. On both the TI-83 and Casio this looks like (¡) . Simply press the sign change key and then type in the number. For example, to enter ¡7, press (¡) 7. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB10 plus 2nd ed cyan magenta yellow black Y:\HAESE\IB_10_PLUS-2ed\IB_10P-2ed_00a\010IB_10P-2_00a.CDR Wednesday, 23 January 2008 4:46:39 PM PETERDELL