ebook img

Mathematics for the international student : mathematics SL, for use with IB diploma programme PDF

760 Pages·2012·18.199 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics for the international student : mathematics SL, for use with IB diploma programme

HAESE MATHEMATICS Specialists in mathematics publishing Mathematics for the international student Mathematics SL third edition Robert Haese Sandra Haese Michael Haese Marjut Mäenpää Mark Humphries for use with IB Diploma Programme 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\001IB_SL-3ed_00.cdr Monday, 20 February 2012 9:31:21 AM BEN MATHEMATICSFORTHEINTERNATIONALSTUDENT MathematicsSLthirdedition RobertHaese B.Sc. SandraHaese B.Sc. MichaelHaese B.Sc.(Hons.),Ph.D. MarjutMäenpää B.Sc.,Dip.Ed. MarkHumphries B.Sc.(Hons.) HaeseMathematics 3FrankCollopyCourt,AdelaideAirport, SA5950,AUSTRALIA Telephone: +618 83559444, Fax: +618 83559471 Email: [email protected] Web: www.haesemathematics.com.au NationalLibraryofAustraliaCardNumber&ISBN 978-1-921972-08-9 ©HaeseMathematics2012 PublishedbyHaeseMathematics. 3FrankCollopyCourt,AdelaideAirport, SA5950,AUSTRALIA FirstEdition 2004 Reprinted 2005threetimes(withminorcorrections),2006,2007,2008twice SecondEdition 2009 Reprinted 2010twice(withminorcorrections),2011 ThirdEdition 2012 TypesetinTimesRoman10\Qw_. The textbook and its accompanying CD have been developed independently of the International Baccalaureate Organization (IBO). The textbook and CD are in no way connected with, or endorsed by, theIBO. This book is copyright. Except as permitted by the CopyrightAct (any fair dealing for the purposes of private study, research, criticism or review), no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Enquiries to be made to Haese Mathematics. Copying foreducational purposes:Where copies of part or the whole of the book are made under Part VB of the CopyrightAct, the law requires that the educational institution or the body that administers it has given a remuneration notice to Copyright Agency Limited (CAL). For information, contact the CopyrightAgencyLimited. Acknowledgements: While every attempt has been made to trace and acknowledge copyright, the authors and publishers apologise for any accidental infringement where copyright has proved untraceable. They wouldbepleasedtocometoasuitableagreementwiththerightfulowner. Disclaimer:Alltheinternetaddresses(URLs)giveninthisbookwerevalidatthetimeofprinting.While the authors and publisher regret any inconvenience that changes of address may cause readers, no responsibilityforanysuchchangescanbeacceptedbyeithertheauthorsorthepublisher. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\002IB_SL-3ed_00.cdr Thursday, 1 March 2012 10:12:51 AM BEN FOREWORD Mathematics for the International Student: Mathematics SL has been written to embrace the syllabus for the two-year Mathematics SL Course, to be first examined in 2014. It is not our intention to define the course. Teachers are encouraged to use other resources. We have developed this book independently of the International Baccalaureate Organization (IBO) in consultation with manyexperiencedteachersofIBMathematics.ThetextisnotendorsedbytheIBO. In the third edition, chapters are arranged to follow the same order as the chapters in our MathematicsHL(Core)thirdedition,makingiteasierforteacherswhohavecombinedclassesofSL andHLstudents. Syllabus references are given at the beginning of each chapter. The new edition reflects the new Mathematics SLsyllabus. More lower level questions have been added at the start of the exercises, to make them more suitable for a range of ability levels. Discussion topics for the Theory of Knowledgehavebeenincludedinthisedition.Seepage12forasummary. In response to the introduction of a calculator-free examination paper, a large number of questions have been added and categorised as ‘calculator’ or ‘non calculator’. In particular, the final chapter containsover160examination-stylequestions. ComprehensivegraphicscalculatorinstructionsforCasiofx-9860GPlus,Casiofx-CG20,TI-84Plus and TI-nspire are accessible as printable pages on the CD (see page 16) and, occasionally, where additional help may be needed, more detailed instructions are available from icons located throughout the book. The extensive use of graphics calculators and computer packages throughout the book enables students to realise the importance, application, and appropriate use of technology. No single aspect of technology has been favoured. It is as important that students work with a pen andpaperasitisthattheyusetheirgraphicscalculator,oruseaspreadsheetorgraphingpackageon computer. This package is language rich and technology rich. The combination of textbook and interactive StudentCDwillfosterthemathematicaldevelopmentofstudentsinastimulatingway.Frequentuse of the interactive features on the CD is certain to nurture a much deeper understanding and appreciation of mathematical concepts. The CD also offers Self Tutor for every worked example. Self Tutor is accessed via the CD – click anywhere on any worked example to hear a teacher’s voice explain each step in that worked example. This is ideal for catch-up and revision, or for motivatedstudentswhowanttodosomeindependentstudyoutsideschoolhours. For students who may not have a good understanding of the necessary background knowledge for this course, we have provided printable pages of information, examples, exercises, and answers on theStudentCD–see‘Backgroundknowledge’(page16). The interactive features of the CD allow immediate access to our own specially designed geometry software, graphing software and more. Teachers are provided with a quick and easy way to demonstrateconcepts,andstudentscandiscoverforthemselvesandre-visitwhennecessary. continuednextpage 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\003IB_SL-3ed_00.cdr Thursday, 1 March 2012 10:13:15 AM BEN Itisnotourintentionthateachchapterbeworkedthroughinfull.Timeconstraintsmaynotallowfor this.Teachers must select exercises carefully, according to the abilities and prior knowledge of their students, to make the most efficient use of time and give as thorough coverage of work as possible. Investigations throughout the book will add to the discovery aspect of the course and enhance studentunderstandingandlearning. In this changing world of mathematics education, we believe that the contextual approach shown in this book, with the associated use of technology, will enhance the students’ understanding, knowledgeandappreciationofmathematics,anditsuniversalapplication. Wewelcomeyourfeedback. Email: [email protected] Web: www.haesemathematics.com.au RCH SHH PMH EMM MAH ACKNOWLEDGEMENTS CartoonartworkbyJohnMartin.ArtworkbyPiotrPoturajandBenjaminFitzgerald. CoverdesignbyPiotrPoturaj. Computer software by Thomas Jansson, Troy Cruickshank, Ashvin Narayanan, Adrian Blackburn, EdwardRossandTimLee. TypesetinAustraliabyCharlotteFrost. EditorialreviewbyCatherineQuinnandDavidMartin. The authors and publishers would like to thank all those teachers who offered advice and encouragementonthisbook.Manyofthemreadthepageproofsandofferedconstructivecomments and suggestions. These teachers include: Dr. Andrzej Cichy, Paul Thompson, Chris Carter, Glen Whiffen, Leslie Miller, Annette MacDougall, Fatima Remtulla, Sandra Tweedy, Vivienne Verschuren, Dhruv Prajapati, Matt Kaun and Pamela Vollmar. To anyone we may have missed, we offerourapologies. The publishers wish to make it clear that acknowledging these individuals does not imply any endorsementofthisbookbyanyofthem,andallresponsibilityforthecontentrestswiththeauthors andpublishers. 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\004IB_SL-3ed_00.cdr Friday, 2 March 2012 10:02:03 AM BEN USING THE INTERACTIVE STUDENT CD TheinteractiveCDisidealforindependentstudy. MMaaIINNttTTEEhhRRAACCTTeeIIVVEEmmSSTTUUDDEEaaNNTTCCDDttiiccss Students can revisit concepts taught in class and undertake their own revision fortheinternationalstudent SSLL tthhiirrddeeddiittiioonn andpractice.TheCDalsohasthetextofthebook,allowingstudentstoleave includeSself Tutor ©2012 MMaatthheemmaattiiccssSSLL thetextbookatschoolandkeeptheCDathome. ffoorruusseewwiitttthhhhIIiiBBrrddDDeeiippddllooiimmttiiaaoonnPPrrooggrraammmmee By clicking on the relevant icon, a range of interactive features can be accessed: INTERACTIVE (cid:2) Self Tutor LINK (cid:2) Graphicscalculatorinstructions (cid:2) Backgroundknowledge(asprintablepages) (cid:2) Interactive links to spreadsheets, graphing and geometry software, computerdemonstrationsandsimulations Graphics calculator instructions: Detailed instructions are available on the CD, as printable pages (see page 16). Click on the icon for Casio fx-9860G GRAPHICS CALCULATOR Plus,Casiofx-CG20,TI-84Plus,orTI-nspireinstructions. INSTRUCTIONS SELF TUTOR is an exciting feature of this book. The Self Tutor icon on each worked example denotes an active link on the CD. Simply ‘click’on the Self Tutor (or anywhere in the example box) to access the worked example, with a teacher’s voice explaining each step necessary to reach the answer. Play any line as often as you like. See how the basic processes come alive using movement and colour on the screen. Ideal for students who have missed lessons or need extra help. Example2 Self Tutor µ ¶ 3 Alinepassesthroughthepoint A(1,5) andhasdirectionvector . Describethelineusing: 2 a a vector equation b parametricequations c a Cartesianequation. a The vector eµqua¶tionis r = aµ+ t¶b where µ ¶ ¡! 1 3 b= 3 R a = OA= and b = 2 5 2 µ ¶ µ ¶ µ ¶ A x 1 3 ) = +t , t2R y 5 2 b x=1+3t and y =5+2t, t2R r a x¡1 y¡5 c Now t= = 3 2 ) 2x¡2=3y¡15 O ) 2x¡3y =¡13 SeeChapter13,Vectorapplications,p.323 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\005IB_SL-3ed_00.cdr Thursday, 1 March 2012 10:18:20 AM BEN 6 TABLEOFCONTENTS TABLE OF CONTENTS SYMBOLSANDNOTATION 2 FUNCTIONS 53 USEDINTHISBOOK 10 A Relationsandfunctions 54 B Functionnotation 57 BACKGROUNDKNOWLEDGE 16 C Domainandrange 59 D Compositefunctions 64 A Surdsandradicals CD E Signdiagrams 66 B Scientificnotation(standardform) CD F Rationalfunctions 69 C Numbersystemsandsetnotation CD G Inversefunctions 73 D Algebraicsimplification CD Reviewset2A 77 E Linearequationsandinequalities CD Reviewset2B 78 F Modulusorabsolutevalue CD Reviewset2C 80 G Productexpansion CD H Factorisation CD 3 EXPONENTIALS 81 I Formularearrangement CD J Addingandsubtractingalgebraicfractions CD A Exponents 82 K Congruenceandsimilarity CD B Lawsofexponents 84 L Pythagoras’theorem CD C Rationalexponents 87 M Coordinategeometry CD D Algebraicexpansionandfactorisation 90 N Rightangledtriangletrigonometry CD E Exponentialequations 92 F Exponentialfunctions 94 Factsaboutnumbersets CD G Growthanddecay 98 H Thenaturalexponentialex 101 Summaryofcircleproperties CD Reviewset3A 105 Reviewset3B 106 Summaryofmeasurementfacts CD Reviewset3C 107 GRAPHICSCALCULATOR 4 LOGARITHMS 109 INSTRUCTIONS 16 A Logarithmsinbase10 110 B Logarithmsinbasea 113 Casiofx-9860GPLUS CD C Lawsoflogarithms 116 Casiofx-CG20 CD D Naturallogarithms 120 TexasInstrumentsTI-84Plus CD TexasInstrumentsTI-nspire CD E Exponentialequationsusinglogarithms 123 F Thechangeofbaserule 125 1 QUADRATICS 17 G Graphsoflogarithmicfunctions 126 H Growthanddecay 130 A Quadraticequations 19 Reviewset4A 132 B Thediscriminantofaquadratic 25 Reviewset4B 133 C Quadraticfunctions 28 Reviewset4C 134 D Findingaquadraticfromitsgraph 38 E Wherefunctionsmeet 42 5 TRANSFORMINGFUNCTIONS 135 F Problemsolvingwithquadratics 44 A Graphingfunctions 136 G Quadraticoptimisation 47 B Transformationofgraphs 140 Reviewset1A 49 C Translationsy=f(x)+bandy=f(x-a) 141 Reviewset1B 50 D Stretchesy=pf(x),p>0and Reviewset1C 51 y=f(qx),q>0 143 E Reflectionsy=-f(x)andy=f(-x) 144 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\006IB_SL-3ed_00.cdr Thursday, 1 March 2012 3:26:14 PM BEN TABLEOFCONTENTS 7 F Miscellaneoustransformations 146 10 TRIGONOMETRIC Reviewset5A 148 FUNCTIONS 231 Reviewset5B 149 A Periodicbehaviour 232 Reviewset5C 150 B Thesinefunction 236 C Modellingusingsinefunctions 243 6 SEQUENCESANDSERIES 151 D Thecosinefunction 246 A Numbersequences 152 E Thetangentfunction 248 B Thegeneraltermofanumbersequence 153 F Generaltrigonometricfunctions 251 C Arithmeticsequences 155 Reviewset10A 253 D Geometricsequences 159 Reviewset10B 253 E Series 166 Reviewset10C 254 F Arithmeticseries 167 G Geometricseries 170 11 TRIGONOMETRICEQUATIONS Reviewset6A 176 ANDIDENTITIES 255 Reviewset6B 176 A Trigonometricequations 256 Reviewset6C 177 B Usingtrigonometricmodels 263 C Trigonometricrelationships 265 7 THEBINOMIALEXPANSION 179 D Doubleangleformulae 268 A Binomialexpansions 180 E Trigonometricequationsinquadraticform 271 B Thebinomialcoefficient(nr) 183 Reviewset11A 272 C Thebinomialtheorem 185 Reviewset11B 273 Reviewset7A 187 Reviewset11C 274 Reviewset7B 188 12 VECTORS 275 8 THEUNITCIRCLEAND A Vectorsandscalars 276 RADIANMEASURE 189 B Geometricoperationswithvectors 279 A Radianmeasure 190 C Vectorsintheplane 286 B Arclengthandsectorarea 193 D Themagnitudeofavector 288 C Theunitcircleandthetrigonometricratios 196 E Operationswithplanevectors 290 D Applicationsoftheunitcircle 201 F Thevectorbetweentwopoints 293 E Multiplesof ?h_ and ?f_ 205 G Vectorsinspace 296 F Theequationofastraightline 209 H Operationswithvectorsinspace 300 Reviewset8A 210 I Parallelism 304 Reviewset8B 211 J Thescalarproductoftwovectors 307 Reviewset8C 212 Reviewset12A 314 Reviewset12B 315 9 NON-RIGHTANGLED Reviewset12C 317 TRIANGLETRIGONOMETRY 213 13 VECTORAPPLICATIONS 319 A Areasoftriangles 214 B Thecosinerule 217 A Problemsinvolvingvectoroperations 320 C Thesinerule 220 B Linesin2-Dand3-D 322 D Usingthesineandcosinerules 224 C Theanglebetweentwolines 326 Reviewset9A 228 D Constantvelocityproblems 328 Reviewset9B 229 E Theshortestdistancefromalinetoapoint 331 Reviewset9C 230 F Intersectinglines 335 G Relationshipsbetweenlines 337 Reviewset13A 340 Reviewset13B 341 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\007IB_SL-3ed_00.cdr Thursday, 1 March 2012 3:11:52 PM BEN 8 TABLEOFCONTENTS Reviewset13C 342 D Integration 454 E Rulesforintegration 457 14 INTRODUCTIONTO F Integratingf(ax+b) 462 DIFFERENTIALCALCULUS 343 G Integrationbysubstitution 465 H Definiteintegrals 468 A Limits 345 Reviewset18A 472 B Limitsatinfinity 347 Reviewset18B 473 C Ratesofchange 350 Reviewset18C 473 D Thederivativefunction 353 E Differentiationfromfirstprinciples 355 19 APPLICATIONSOF Reviewset14A 357 Reviewset14B 358 INTEGRATION 475 Reviewset14C 358 A Theareaunderacurve 476 B Theareabetweentwofunctions 479 15 RULESOFDIFFERENTIATION 359 C Kinematics 483 A Simplerulesofdifferentiation 360 D Solidsofrevolution 489 B Thechainrule 364 Reviewset19A 494 C Theproductrule 367 Reviewset19B 496 D Thequotientrule 369 Reviewset19C 497 E Derivativesofexponentialfunctions 371 F Derivativesoflogarithmicfunctions 375 20 DESCRIPTIVESTATISTICS 499 G Derivativesoftrigonometricfunctions 378 A Keystatisticalconcepts 500 H Secondandhigherderivatives 381 B Measuringthecentreofdata 505 Reviewset15A 383 C Measuringthespreadofdata 517 Reviewset15B 383 D Boxplots 521 Reviewset15C 384 E Cumulativefrequencygraphs 526 F Varianceandstandarddeviation 531 16 PROPERTIESOFCURVES 385 Reviewset20A 539 A Tangentsandnormals 386 Reviewset20B 541 B Increasinganddecreasingfunctions 392 Reviewset20C 542 C Stationarypoints 397 D Inflectionsandshape 401 21 LINEARMODELLING 545 Reviewset16A 409 A Correlation 546 Reviewset16B 410 B Pearson’scorrelationcoefficient 550 Reviewset16C 411 C Lineofbestfit 554 D Theleastsquaresregressionline 557 17 APPLICATIONSOF E Interpolationandextrapolation 558 DIFFERENTIALCALCULUS 413 Reviewset21A 562 A Kinematics 414 Reviewset21B 563 B Ratesofchange 423 Reviewset21C 565 C Optimisation 428 Reviewset17A 437 22 PROBABILITY 567 Reviewset17B 438 A Experimentalprobability 569 Reviewset17C 439 B Samplespace 574 C Theoreticalprobability 575 18 INTEGRATION 441 D Tablesofoutcomes 579 A Theareaunderacurve 442 E Compoundevents 581 B Antidifferentiation 448 F Treediagrams 585 C Thefundamentaltheoremofcalculus 449 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\008IB_SL-3ed_00.cdr Thursday, 1 March 2012 3:12:10 PM BEN TABLEOFCONTENTS 9 G Samplingwithandwithoutreplacement 588 H SetsandVenndiagrams 591 I Lawsofprobability 597 J Independentevents 601 Reviewset22A 604 Reviewset22B 604 Reviewset22C 606 23 DISCRETERANDOM VARIABLES 607 A Discreterandomvariables 608 B Discreteprobabilitydistributions 610 C Expectation 614 D Thebinomialdistribution 618 Reviewset23A 626 Reviewset23B 627 Reviewset23C 628 24 THENORMALDISTRIBUTION 629 A Thenormaldistribution 631 B Probabilitiesusingacalculator 636 C Thestandardnormaldistribution (Z-distribution) 639 D Quantilesork-values 644 Reviewset24A 648 Reviewset24B 649 Reviewset24C 650 25 MISCELLANEOUSQUESTIONS 651 A Non-calculatorquestions 652 B Calculatorquestions 665 ANSWERS 679 INDEX 755 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\009IB_SL-3ed_00.cdr Thursday, 1 March 2012 3:12:19 PM BEN 10 SYMBOLS AND NOTATION USED IN THIS BOOK N thesetofpositiveintegersandzero, ajb adividesb f0,1,2,3,....g u thenthtermofasequenceorseries n Z thesetofintegers,f0,§1,§2,§3,....g d thecommondifferenceofanarithmetic Z+ thesetofpositiveintegers,f1,2,3,....g sequence Q thesetofrationalnumbers r thecommonratioofageometricsequence Q+ thesetofpositiverationalnumbers, Sn thesumofthefirstntermsofasequence, fxjx>0, x2Q g u1+u2+::::+un R thesetofrealnumbers S1 or S thesumtoinfinityofasequence, u +u +:::: R+ thesetofpositiverealnumbers, 1 2 Xn fxjx>0, x2Rg u u +u +::::+u i 1 2 n fx1,x2,....g thesetwithelements x1,x2,.... µi=1 ¶ n(A) thenumberofelementsinsetA n therth binomialcoefficient,r=0,1,2,:::: r fxj.... thesetofallxsuchthat intheexpansionof (a+b)n 2 isanelementof f : A!B f isafunctionunderwhicheachelement 2= isnotanelementof ofsetAhasanimageinsetB ? theempty(null)set f : x7!y f isafunctionwhichmapsxontoy U theuniversalset f(x) theimageofxunderthefunctionf [ union f¡1 theinversefunctionofthefunctionf \ intersection f±g thecompositefunctionoff andg ½ isapropersubsetof lim f(x) thelimitoff(x)asxtendstoa µ isasubsetof x!a A0 thecomplementofthesetA dy thederivativeofy withrespecttox 1 p 1 dx an, na atothepowerof n, nthrootofa f0(x) thederivativeoff(x)withrespecttox p (if a>0 then na>0) d2y thesecondderivativeofy withrespecttox 1 p 1 dx2 a2, a atothepower 2, squarerootofa f00(x) thesecondderivativeoff(x)withrespect (if a>0 then pa>0) tox dny jxj themo½dulusorabsolutevalueofx dxn thenthderivativeofy withrespecttox xforx>0 x2R jxj= ¡xforx<0 x2R fR(n)(x) thenthderivativeoff(x)withrespecttox ydx theindefiniteintegralofy withrespecttox ´ identity or isequivalentto Z ¼ isapproximatelyequalto b ydx thedefiniteintegralofy withrespecttox > isgreaterthan a betweenthelimits x=a and x=b ¸or> isgreaterthanorequalto ex exponentialfunctionofx < islessthan log x logarithmtothebaseaofx a ·or6 islessthanorequalto lnx thenaturallogarithmofx, log x e isnotgreaterthan sin,cos,tan thecircularfunctions ¥ isnotlessthan 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 0 5 25 50 75 95 100 IB_SL-3ed cyan magenta yellow black Y:\HAESE\IB_SL-3ed\IB_SL-3ed_00\010IB_SL-3ed_00.cdr Thursday, 1 March 2012 1:15:57 PM BEN

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.