ebook img

Mathematics for Joint Entrance Examination JEE (Advanced) Trigonometry - Daily Practice PDF

80 Pages·6.401 MB·English
by  TEWANI
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics for Joint Entrance Examination JEE (Advanced) Trigonometry - Daily Practice

Chapterwise/Topicwise Daily Practice Problems (DPP) Trigonometry | P" P Main & J C r Advanced EX L.-.'-.'l L - Practice concepts and improve your grip on problem-solving skills Authored by G. Tewani CENGAGE & Learning* Andover • Melbourne • Mexico City • Stamford, CT • Toronto • Hong Kong • New Delhi • Seoul • Singapore • Tokyo / CENGAGE •* Learning' Chapterwise/Topicwise © 2016 Cengage Learning India Pvt. Ltd. Daily Practice Problems (DPP): Trigonometry ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may G. Tewani be reproduced, transmitted, stored or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, without the prior written permission of the publisher. For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to [email protected] ISBN-13: 978-81-315-2994-2 ISBN-10: 81-315-2994-0 Cengage Learning India Pvt. Ltd 418, F.I.E., Patparganj Delhi 110092 Cengage Learning is a leading provider of customized learning solutions with office * locations around the globe, including Andover, Melbourne, Mexico City, Stamford (CT), Toronto, Hong Kong, New Delhi, Seoul, Singapore, and Tokyo. Locate your local office at www.cengage.com/global Cengage Learning products are represented in Canada by Nelson Education, Ltd. For product information, visit www.cengage.co.in J 1 Contents k I I I L J Chapter 1: Logarithm and Its Applications 1.1-1.4 I DPP 1.1 Exponential and Logarithmic Functions 1.1 DPP 1.2 Properties of Logarithm 1.2 DPP 1.3 Logarithmic Equations 13 I DPP 1.4 Inequalities and Finding Logarithm 1.4 Chapter 2: Trigonometric Functions 2.1-2.4 DPP 2.1 Trigonometric Ratios of Acute Angles; Trigonometric Identities 2.1 DPP 2.2 Trigonometric Functions 23 DPP 2.3 Trigonometric Ratios of Allied Angles 2.4 Chapter 3: Trigonometric Ratios for Compound, Multiple, Sub-multiple Angles, and Transformation Formulas 3.1-3.5 DPP 3.1 Trigonometric Ratios of Compound Angles and Transformation Formulas 3.1 DPP 3.2 Trigonometric Ratios of Multiple Angles 3.3 DPP 3.3 Trigonometric Ratios of Some Typical Angles, Conditional Identities and Miscellaneous 3.5 Chapter 4: Trigonometric Equations 4.1-4.6 DPP 4.1 Basic Problems Related to Trigonometric Equations 4.1 DPP 4.2 Trigonometric Equations of the Formex) =/(«), Where/(x) is Trigonometric Function 4.3 DPP 4.3 Trigonometric Equations of the Form a cos x + b sin x = c and Based on Extreme Values of the Function 4.5 DPP 4.4 Inequalities and Solving Equations Using Graphs 4.6 Chapter 5: Inverse Trigonometric Functions 5.1-5.6 DPP 5.1 Inverse Trigonometric Functions: Domain, Range, Principal Values 5.1 DPP 5.2 Relating Different Inverse Trigonometric Functions, Complementary Angles 53 DPP 5.3 Sum and Difference of Angles 5.5 Chapter 6: Solutions and Properties of Triangle 6.1-6.6 DPP 6.1 Different Rules in Triangle 6.1 DPP 6.2 Half-Angle Formula and Area of Triangle 63 DPP 6.3 Different Centres of Triangle, Angle and Length Associated with It 6.4 DPP 6.4 Exradius, Ambiguous Cases and Miscellaneous 6.6 Solutions S.1-S.43 r r J i- ■ 7.-' 1" !1 IE Logarithm and Its ■f Applications 1.1 DPP I I Exponential and Logarithmic Functions F".....~ — B Single Correct Answer Type ___Jf 5. If log4A = log6B = log9(A 4- B) then the value of — is A 1. If x e N, then the value of x satisfying the equation (a) ((b»)) 4 4 5X • = 500 is divisible by (d)£t> (a) 2 (b) 4 (c) 3 (d) 5 (c) (d) 2 2 2. If logI755x = log3437x, then the value of log42(x4 - 2X2+7) 6. The value of is / i— X (a) 1 (b) 2 (c) 3 '(d) 4 Mir 1 6— 6—• • • oo is The value of log10 ^3-^5 + 5/34-5/5) is 2^3 2>/3 1 2V3 3. 7 (a) -2 (b) -1 (a) 1/2 (b) 1/4 (c) -1/2 (d) none of these (c) 3/2 (d) 3/4 7. Number of real values of x satisfying the equation 161/x l08 A,,.! <1Og2?.2x.3(? - 2jC» = 0 iS «lUal 10 4. Which of the following is not the solution of —> 1 ? (a) 3 (b) 2 (c) I (d) 0 (a) (-00,-4) (b)(O,l) 8. |0logi’ll°s«(l°8',)l = 1 and logging,(logpx)) = 0. then ‘p’ (c) (0,00) (d) none of these equals (a) (b) rq (c) 1 (d) /’ Answers Key Single Correct Ansiver Type 6. (c) 7. (c) 8. (a) 1. (c) 2. (a) 3. (a) 4. (c) 5. (d) 1.2 Trigonometry DPP Properties of Logarithm 8. There exist positive integers A, B and C with no common L Single Correct Answer Type factors greater than 1, such that 1. The greatest integer less than or equal to the number A log2005 + B log2002 = C. The sum A + B + C equals log2 15 x log1/62 x log3 1/6 is (a) 5 (b) 6 (c) 7 (d) 8 (a)" 4 (b) 3 (c) 2 (d) 1 9. The value of (2loe*18) • (3,OS63) is 2. Given that log23 = a, log35 = b, log72 = c, then the value (a) 6 (b) 9 (c) 12 (d) 18 of loguo63 is equal to 10. If logab = 2, loghc = 2 and log3c = 3 + log3a, then the value 2 + ac 1 + 2ac (a) (b) 2c +1 + abc c + 2 + abc of — is ab 1 + 2ac 2 + ac (c) (d) (a) 1 (b) 3 (c) 9 (d) 27 2c +1 + abc c + 2 + abc ;. togelO = , if Jog2x = log22=log2z 11. If log210=p; q and (ll)r= 10, then which one and AJy2z = 1, then k is equal ’ l°ge7 ,4 6 3k to of the following expressions is equivalent to log10l 54? (a) -8 ((bb)) --44 (c) 0 (d) 4 (b) J- (a) pqr 4. A line x = k intersects the graph of y = log4x and y = log^x pqr + 4). The distance between the points of intersection is 0.5, then the value of k is p + q + r pq + qr + rp (c) (d) (a) 1 (b) 2 (c) 3 (d) 4 pqr pqr C Tk 1 r log3135 log35 5. The value of - 1------ —— is 12. If 3(l°837> = 7O0873), then t^e va]ue of x wjn be logi53 l°g405 3 (a) 1 (b) 1 (c) | (a) 1 (b) 2 (C) 3 (d) 4 (c) ~ (d) 1 2.4 3 1 1 1 6. The value of d----------------1--------------- is equal log^ abc \ogcaabc \ogababc 13. The value of is to (a, b, c > 0) (a) 3 (b) 6 (c) 9 (d) 27 (a) 1/2. (b) 1 (c) 2 (d) 4 7. log//. log/V + log//. log// + log//. log,// is equal to 1 3 8l">ss’ + 3'°Mp r 2 \ogaN-\ogbN-\ogcN 14. The value of j77)loe2s7-(i25)108256 (a) 409 is ^abcN (a) 0 (b) 1 (c) 2 (d) 3 ^8abcN (b) logfl2V • log^jV • logc/V 15. The value of 6lo8lo40-5loei°36 is log Nabc (a) 200 (b) 216 (c) logNa ■ logNb ■ log^c (c) 432 (d) none of these (d) none of these Answers Key Single Correct Answer Type 6. (c) 7. (a) 8. (b) 9. (a) 10. (b) 1. (c) 2. (c) 3. (a) 4. (d) 5. (c) H. (d) 12. (a) 13. (c) 14. (b) 15. (b) Logarithm and Its Applications 1.3 DPP 1.3 Logarithmic Equations -------- .......... --------- 11. The sum of all values of a satisfying the equation SSuubbjjeeccttiivvee TTyyppee log10a -1 = logI0a + log10 2 is 1. Find the value of x satisfying the equations log3(log2 x) + log10(a-l) 2 logi/3<loSi/2y) = 1 andxy2 = 9 (a) 0 (b) 1 2. Let a and b be real numbers greater than 1 for which there (c) 2 (d) none of these exists a positive real number c, different from 1, such that 12. The number of real solution(s) of the equation 9log3(log'x) 2(logflc + log/) = 91oga/. Find the largest possible value = log/ - (log/)2 + 1 is equal to of logab. (a) 0 (b) 1 (c) 2 (d) 3 3. Solve: log3x • log4x • log5x = log3x • log4X + log4x • log/ I + log5x ■ log3x. ,logx(l-x)2 13. The solution set of the equation -r = 9, is 4. Solve: | log4(x + 2)2 + 3 = log4(4 - x)3 + log4(6 + x)3 (a) {-2,4} (b) {4} (c) {0,-2,-4} (d) none of these 5. Solve: log3/4 log8 (x2 + 7) + log 1/2 log1/4 (x2 + 7)“’ = -2 14. The value of x satisfying the equation 6. If 5lofix - 3 l08x~1 = 3logx+1 - 5 logx“ *, where the base of logarithm is 10, then find the value of x. - 3 is equal to 7. Solve the system of equations: (log/)(loga(xyz)) = 48 (a) (b) n (c) 3 (logay)(loga(xyz)) = 12 15. Ifa> l,x>0and 2,og^(2x) = 5lo8-(5x), then x is equal to (log/)(loga(^z)) = 84 8. Solve: ^-31”'=^/^-^ix-2 (a) —10 ((bb)) --5 ((cc)) -72 (d) 1 16. If X] and x2 are solutions of the equation 9. Solve: log 216 + loglt64 = 3 X log5 ^10gM |x| + (25/ -1) = 2x, then ! Single Correct Answer Type _____ J (a) X! = 2x, (b) Xj + x2 = 0 (c) X| = 3x2 (d) XjX, = 64 I 10. The value ofx for which equation 5-3l°83X-21”,°S2X-3=0 17. If log69 - log927 + log8x = logMx - log64, then the value is ofxis (C)| (a) 1 (b) 2 (d) 7 (a) 1/2 (b) 1/4 (c) 1/8 (d) 1/16 Answers Key Subjective Type Single Correct Answer Type 1. x = 729 2. 2 10. (a) 11. (c) 12. (b) 13. (b) 14. (c) 3. 60 4. x = 2,1 - '33 15. (a) 16. (b) 17. (c) 5. ±3 6. 100 7. x = a4,y-a, z-a,7 8. x = 4,2;x=Il 9. x = 2’l/3,4 1.4 Trigonometry DPP Inequalities and Finding Logarithm r------ --------------] SSiinnggllee CCoorrrreecctt AAnnsswweerr TTyyppee MMuullttiippllee CCoorrrreecctt AAnnsswweerrss TTyyppee i 1. If log,(log,(log, x)) = 2, then the number of digits in x, is 6. If log 1/2(4 - x) > log1/22 - log1/2(x - 1), then x can belong (log102 = O.3olo) to (a) (1,2] (b) [1,3] (c) [3,4) (d) [2,3] (a) 7 (b) 6 (c) 5 (d) 4 7. The values of x satisfying 2. The number of integers satisfying the inequality 9 2 1l og^(✓ x + 5)>- log , ("9)4-log ^—^(2) is/are log^ log5 (\F + 5 + x) > 0 is *---------O I \" ’ “/ ' - — , 4 W3 (a) 6 (b) 7 (c) 8 (d) 9 (a) (-5,-4) (b) (-3,-1) 3. The smallest integral x satisfying the inequality (c) (-4,-1) (d) (-5,-2) 1 - log4 x 1 . 3 ------< - x is 8. If log3 x - (log3 x) 2< - log; 4, then x can belong to 1 + log, x 2 2 (1/2V2) (a) (-~, 1/3) (b) (9, oo) (a) y[2 (b) 2 (c) 3 (d) 4 (c) (1,6) (d) (-~,0) I 4. The number of integral solutions of log9 (x + 1) • 9. Which of the following is/are true? log, (x + 1) - log9 (x + 1) - log, (x + 1) + 1 < 0 is (a) number of digits in 812 535 is 35 (a) 4 (b) 5 (c) 6 (d) 7 (b) number of digits in 812 535 is 36 r 2(x-2) > (c) number of zeroes after decimal before a significant 5. The number of integers satisfying log^[(x + I)(x-5), / 8 \20 > 1 is figure starts in I— is 10 (a) 0 (b) 1 (c) 2 (d) 3 (d) number of zeroes after decimal before a significant / 8 \20 figure starts in —- is 11 127. Answers Key Single Correct Answer Type Multiple Correct Answers Type 1. (c) 2. (c) 3. (b) 4. (c) 5. (a) 6. (a, c) 7. (a, b) 8. (a, b) 9. (b,c) I j -' fL il j n.. /A', < rr j; I I I Trigonometric li Functions F 2.1 i DPP Trigonometric Ratios of Acute Angles; Trigonometric Identities ■r...... ' i 6. In a &ABC, sin A + sin\B + sin C = 1 + 72 SSiinnggllee CCoorrrreecctt AAnnsswweerr TTyyppee and cos A + cos B + cos C = 72 1. The circular wire of diameter 10 cm is cut and placed along if the triangle is the circumference of a circle of diameter 1 meter. The angle (a) equilateral (b) isosceles subtended by the wire at the center of circle is equal to (c) right angled (d) right angle isosceles n " i (a) — radian (b) — radian 3 ‘ 4 sin2x-2cos2x +1 7. If = 4, then the value of 2 tan2 x is sin2x + 2cos2x-l n (c) — radian (d) — radian 5 10 (a) 3 (b) 4 (c) 5 (d) 6 8. If sin 0, tan 0. cos 0 are in G.P., then 4 sin2 0-3 sin4 0 sin 0 cos 0 2. H------------- + sin6 0 = 1 - cot 0 1 - tan 0 (a) -1 (b) 2 (a) 0 (b) 1 (c) 1 (d) None of these (c) cos0-sin0 (d) cos 0+ sin 6 9. If tan 0 - cot 0 = a and sin 0 + cos 0 = b, then (b1 - 1), 2 “ 11 _ (a1 + 4) is equal to 3. If 0 e (tz/4, n/2) and V----- = sin 6 + cos 0, then the (a) 2 (b) -4 (c) ±4 (d) 4 n=itan"0 value of tan 0 is 10. The least value of 18 sin2 0+2 cosec2 0 - 3 is (a) -15 (b) -12 (c) 0 (d) 9 (a) 3 (b) 72 + 1 (c) 2 + 73 (d) 72 11. If tan2 a tan2 /?+tan2 fl tan2 y+ tan2 ytan2 a+2 tan2 a tan2 ft tan2 20°-sin2 20° tan2 y= 1, then the value of sin2 a + sin2 + sin2 y is 4. The value of is tan2 20°-sin2 20° (a) 0 (b) 1 (c) 1 (d) none of these (a) 1/2 (b) 1 12. If x, y, z are all positive acute angles, then the least value (b) 2 (d) none of these 5. If 15 sin4 a + 10 cos4 a = 6, then the value of 8 cosec6 a of tan x (cot y + cot z) + tan y (cot z + cot x) + tan z (cot x + 27 sec6 a is + cot y), is (a) 150 (b) 175 (c) 225 (d) 250 (a) 2 (b) 4 (c) 6 (d) 8 2.2 Trigonometry 13. Three circles, each of radius 1, touch one another externally cos a sin a cos ft sin P 14. If = 1, where a and and they lie between two parallel lines. The minimum cos A sin A cos A sin A possible distance between the lines is P do not differ by an even multiple of it, prove that 1 (a) 2+ >/3 (b) 3+V3 (c) 4 (d) 2+-/= cos a cos P sin a sin p '3 cos2 A sin2 A (a) -2 (b) -1 (c) 1 (d) 2 Answers Key Single Correct Answer Type 6. (d) 7. (c) 8. (c) 9. (d) 10. (d) 1. (c) 2. (d) 3. (a) 4. (b) 5. (d) 11. (c) 12. (c) 13. (a) 14. (b)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.