Mathematics and Physics for Nanotechnology Mathematics and Physics for Nanotechnology Technical Tools and Modelling Paolo Di Sia Published by Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988 Email: [email protected] Web: www.panstanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Mathematics and Physics for Nanotechnology: Technical Tools and Modelling All rights reserved. This book, or parts thereof, may not be reproduced in any form Copyright © 2019 by Pan Stanford Publishing Pte. Ltd. or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4800-02-0 (Hardcover) ISBN 978-0-429-02775-8 (eBook) Contents Preface 1. In troduc tion x1i 1.1 The Nanotechnologies World 1 1.2 Classification of Nanostructures 8 1.3 Applications of Nanotechnologies 15 1.4 Applied Mathematics and Nanotechnology 23 1.5 Spintronics, Information Technologies and Nanotechnology 29 1.5.1 Spin Decoherence in Electronic Materials 30 1.5.2 Transport of Polarised Spin in Hybrid Semiconductor Structures 31 1.5.3 Spin-Based Solid State Quantum Computing 32 1.5.4 Spin Entanglement in Solids 32 1.5.5 Optical and Electronic Control of Nuclear Spin Polarisation 33 1.5.6 Physics of Computation 34 1.5.7 Quantum Signal Propagation in 2. Vector Analysis Nanosystems 3357 2.1 Vectors and Scalars 37 2.2 Direction Angles and Direction Cosines 39 2.3 Equality of Vectors 39 2.4 Vector Addition and Subtraction 40 2.5 Multiplication by a Scalar 41 2.6 Scalar Product 41 2.7 Vector Product 43 2.8 Triple Scalar Product 44 V 2.9 Triple Vector Product 45 2.10 Linear Vector Space 45 vi Contents 3. Vector Differentiation 49 3.1 Introduction 49 3.2 The Gradient Operator 51 3.3 Directional Derivative 53 3.4 The Divergence Operator 54 3.5 The Laplacian Operator 55 3.6 The Curl Operator 56 4. 3Co.7o rdinFaoter mSyusltaesm Ins vaonldv iInmgp tohret aNnatb Tlhae Oopreemrast or 5569 4.1 Orthogonal Curvilinear Coordinates 59 4.2 Special Orthogonal Coordinate Systems 61 4.2.1 Cylindrical Coordinates 61 4.2.2 Spherical Coordinates 62 4.3 Vector Integration and Integral Theorems 62 4.4 Gauss Theorem 64 4.5 Stokes Theorem 65 4.6 Green Theorem 66 4.7 Helmholtz Theorem 66 5. 4O.r8d inaryU sDeiffufel rIenntteigarl aElq Ruealtaitoinosn s 6771 5.1 Introduction 71 5.2 Separable Variables 73 5.3 First-Order Linear Equation 74 5.4 Bernoulli Equations 75 5.5 Second-Order Linear Equations with Constant Coefficients 76 5.5.1 Homogeneous Linear Equations with Constant Coefficients 77 5.5.2 Non-homogeneous Linear Equations with Constant Coefficients 78 k 5.6 An Introduction to Differential Equations with 6. Fourier OSerrdieesr an >d 2 In tegrals 8827 6.1 Periodic Functions 87 6.2 Fourier Series 88 6.3 Euler–Fourier Formulas 88 Contents vii 6.4 Half-Range Fourier Series 89 6.5 Change of Interval 90 6.6 Parseval’s Identity 91 6.7 Integration and Differentiation of a Fourier Series 92 6.8 Multiple Fourier Series 94 6.9 Fourier Integrals and Fourier Transforms 95 6.10 Fourier Transforms for Functions of Several 7. FunctionVsa roifa Oblnees Complex Variable 9969 7.1 Complex Numbers 99 7.2 Basic Operations with Complex Numbers 100 7.3 Polar Form of a Complex Number 100 7.4 De Moivre’s Theorem and Roots of Complex Numbers 102 7.5 Functions of a Complex Variable 103 7.6 Limits and Continuity 104 7.7 Derivatives and Analytic Functions 104 7.8 Cauchy–Riemann Conditions 105 7.9 Harmonic Functions 106 7.10 Singular Points 106 8. 7Co.1m1 plexC oInmtepglreaxt iEolnem entary Functions 110173 8.1 Line Integrals in the Complex Plane 113 8.2 Cauchy’s Integral Theorem 115 8.3 Cauchy’s Integral Formula 116 8.4 Series Representations of Analytic Functions 117 8.5 Integration with the Residue Method 117 9. 8Pa.6r tial DEivffaelureanttioianl Eoqf uRaetailo Dnse finite Integrals 111293 9.1 Introduction 123 9.2 Linear Second-Order Partial Differential Equations 124 9.3 Important Second-Order Partial Differential Equations 125 viii Contents 10. Numerical Methods 127 10.1 Interpolation 127 10.2 Solutions of Equations: Graphical Method 127 10.3 Method of Linear Interpolation 129 10.4 Newton Method 130 10.5 Numerical Integration: The Rectangular Rule 131 10.6 Numerical Integration: The Trapezoidal Rule 132 11. 1Q0u.a7n tumNu Bmaseircisc afol rI nNtaengorateticohnn:o Tlohgey S impson Rule 113335 11.1 Black Body Radiation and Planck Hypothesis 135 11.2 Einstein Work on Stimulated Emission 138 11.3 De Broglie Waves 139 11.4 The Compton Effect 140 11.5 The Criterion Governing Classical and Quantum Properties of a Particle 142 11.6 The Uncertainty Relations 142 11.7 The Reality at the Nanoscale and the Concept 12. Schrödinogf eWr aEvqeu aFtuionnct aionnd Nanotechnology 114437 12.1 The Schrödinger Equation 147 12.2 The Time-Dependent Schrödinger Equation 151 12.3 Stationary States 151 12.4 Schrödinger Equation for Quantum Wires 152 12.5 Schrödinger Equation for Quantum Dots 156 12.6 Schrödinger Equation and Drude–Lorentz-like Model 158 12.7 Schrödinger Equation and Computational 13. MathemNaatnicoatle Mchondoellolignyg for Nanotechnology 116603 13.1 Introduction 163 13.2 The Drude Model 164 13.3 The Drude–Lorentz Model 166 13.4 About the Most Utilised Drude–Lorentz-like Models 166 13.5 The Smith Model 169 13.6 Linear Response Theory with a New Idea 170 Contents ix s w 13.7 Other Key Functions 173 s w 13.8 The Complex Conductivity ( ) 173 s w 13.9 Behaviour of Complex Conductivity ( ) 174 13.10 The Poles of Conductivity ( ) 175 13.11 Premises of Quantum and Relativistic Versions of DS Model 176 13.12 Classical Results 178 13.13 Quantum Results 179 13.14 Relativistic Results 181 14. 1Pl3a.s1m5 onEixcsa manpdle Ms oodf Aelplipnlgi cation 118933 14.1 Introduction 193 14.2 Plasmons 194 14.3 Related Theoretical Models 195 14.3.1 The Mie Theory 195 14.3.2 The Gans Theory 196 14.3.3 The Discrete-Dipole Approximation Method (DDA) 196 14.3.4 The Finite-Difference Time-Domain Method (FDTD) 197 15. Nanodif1fu4s.3io.5n inT Ghrea pDhSe Mneo del 119979 15.1 Introduction 199 15.2 Peculiar Properties of Carbon Nanotubes 202 15.2.1 Structure 204 15.2.2 Synthesis 205 15.2.3 Electronic Properties 205 15.2.4 Mechanical Properties 207 15.2.5 Thermal Properties 207 15.2.6 Chemical and Electrochemical Properties 208 15.2.7 Nanobiosensing Properties 208 15.3 Fields of Utilisation 209 15.4 Nanodiffusion: Classical and Quantum Results 211 15.4.1 Classical Case: Dependence on Temperature 211