ebook img

Mathematics and Measurement PDF

66 Pages·1993·4.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics and Measurement

READING THE PAST MATHEMATICS AND MEASUREMENT QA.W. DILKE Mathematics andMeasurement Coverpicture:DetailfromiMcsimile<ittheI'eutinper1ahle,acopyofaRom.mroadmap.Rome isinthecentre.1heoriginalisintheO&terreichischeNationalbibliotheic,Vienna(seefig.37). Copyrightedmaterial Romanbronzeset-square,dividers,proportionalcompasses,rulerandplumb-bob. BritishMuseum. Mathematics and Measurement O. A. W. Dilke UniversityofCaliforniaPress/BritishMuseum Th±» o Acknowledgements Iamindebtedformuchhelpto tin utre,ageographer,andourson, a mathematician; tomycolleagueOrJ.R.Ravetz,ReaderintheHistdrv.inJPhilosophvofScience,University ofLeeds; to IVott-ssorB. Wesenherp; totheMuseoHgizio, Iiinn;.indtoni.inv menihers ofstaffoftheBritish Library andtheBritish Museum.TheseincludeparticularlyDrIan Carradice,MrBrianCook,MrIanJenkins,MrThomasPattie,DrJeffreySpencer,Mr OiristopherWalkerandDrHelenWalHs.1wishtothankthepublishersforenablingme to reproduce illiistrnrinns from my book ihe Row.iu {..vniSurveyors (l*^~r, nowout ofprintexceptinItaliantranslation;andThamesandHudsonLtdforfacilitatingtheuse ofillustrations from my GreekamiRomanMaps (1985): figs4(fromJ.Ball, E^yptin theClassicalGeographers^Cairo,1942),32,33,34(afterPauly,Reat-Encyclopadieder ClassischenAltertumswissenschaft,supp.x,Stuttgart,!965),.^8,39, Thanksarealsoduetoallinstitutions,acknowledgedinthecaptions,whohavekindly suppliedphotographs,aswellastothefollowing: HBMC(England),Hg.22;Courtauld InstituteofArt,London,tigs31,57and58.ArtworkbyChristineBarratt,SueBird,John DixonandAnnSearight. ^ Volume2in ReadingThePastseries LibraryofCongress Cataioging-in-PublicationData Diike,OswaldAshtonWentworth. ©Pub1l9isKh7edrhbiv-B1rriutsitschcsMuofstehuemBrIi'tuibslhicMautisDensumLtd MBiabtlhieomgaratpihcys:apn.dmeasurement. 46BloomsburyStreet,LondonWCIBiQQ Includesindex. 1.Mathematics,—Ancient. Designedhv NrthurI.ockwooJ 2.Mensuration History. Frontc<)\erdesignbyGrahanu'Dudley 1.Tide. 11.Scries. QA22.D55 1988 510'.09'01 86-30803 SetinLinotype202Sabonandprintedat TheBathPress,Avon ISBN0^520-06072r-5(pbk.:alk.paper) Co(., y :odmaterial Contents Prefnee 6 1 TheBackground 2 2 NumbcrinfibyLetters L3 3 MnthematicnlFducntionintlieGreekWorld 12 4 MtMsiiremt-nt 23 5 MathematicsfortheSurveyorandArchitect 22 6 MappingandtheConceptofScale 15. 7 TellingtheTime 40 8 Calculati()nsforTradeandCommerce 4£ 9 MathematirsinleisurePnr<iiiit<iandthe Occnh 53 10 TheSegue! 52 Bibliography 62 IndpY 64 Preface ThesophistProtagoras,wholecturedalloverGreeceinthefifthcenturyBc,proclaimed: Themeasureofeverythingishuman'. Although hespokeinawidecontext,hishearers maywellhavetaken him literally. IntheAshmolean Museum,Oxford,isareliefin the shapeofa pediment,showingthehead,chest,outstretchedarms and foot imprintofa man[helotv).Whateveritsexactmetrologicalinterpretation(andthisisdisputed),itshows notonlyawarenessoftheimportanceofhumanmeasurements,butasenseofharmony andsymmetry.SuchanapproachisvisibleinGreekandRomanartandarchitecture,and intheesteemaccordedtotheteachingofmusicandgeometry. Inourcomputerageofelectronicaccuracy,resultshyancientmethodsmayseemunreliable. Yet in many respectswecan showthat theancientscouldoftencomeclosetoanexact measurement,thoughattemptsatmodernconversionmaybeproblematic. Themostprominenttheoretical aspectsofmathematicswereastronomy,in Babylonia andGreece,andgeometry,inGreece.Thesesometimesoverlapped,andgeometrycontributed tothedevelopmentofalgebraandtrigonometry. Kratostheiies'calculationof theearth's circumferenceshowsacombinationofthetheoreticalandthepractical.Hemayhavebeen moreinterestedinassessingtheangleofthesunatmiddayindifferentplaces,buthealso based his calculationson a rough approximation to actual land distance, and wenton todrawaworldmapwhichinfluencedhissuccessors. .Artefacts fromexcavationsin Egypt,theAthenianagora andelsewhereemphasisethe practical importance, fortradeandcommerce,ofstandard weights, measures andtime- keepers.IntheRomanworldthepracticalsideofmeasurementlargelypredominated.Road- making,surveying,militaryorganisation,watersupplyandsanitation,alldependedonwell- definedsystemsotmeasuring. Thepresentworktriestoshowwhatawealthofartefactswehave,particularlyinmuseums andlibraries,whichthrowlightonancientmathematicsandmeasurement,andtosetthese, alongsidetechnical literature from the Rhind papyrus rightdown to Renaissance Latin, intheirculturalbackground. 1 Greekmetrologicalrelief.Oxford,AshmoleanMuseum. 1 The Background Weknowthatanumberofancientcivilisationsdevelopedtheirowntechniquesotmathema- ticsandmeasurementseparately.Muchisnowknown,forexample,ofthehiston,'ofChinese mathematicsandmeasurement;buttheydidnotinfluencetheknowledgeofthosesubjects intheWest,andsoitisnotproposedtooutlinetheminthisbook.Ofthosecivilisations whichdidinfluenceWesterndevelopments,theprincipaloneswereEgyptandMesopotamia, eachofwhichhadbeenevolvingitsownsystemfromaveryearlyperiod. InEgyptwefindearlyinterestinastronomyandcosmology,culminatinginthedivision ofthe yearinto 12 months of30 dayseach,to which fivedayswereadded. Egyptian interestinthestarswastypifiedbypicturesintombsshowingastronomicalfeatures,including mapsofstarpositions,tocalculatethepassageofnighthours.Suchinformationmayhave beenofpraaicalhelptoafarmingcommunitysuchasflourishedintheNilevalley.The Egyptianswentonfromthistodeviseasystemof 12daytimehoursand 12nighthours, whichformedtheoriginofthemodernsystemofdivisionoftheday.Since,however,the amountofdaylightvariedaccordingtothemonth,itwillbeseen (chapter7)thatsome carefulobservationsandcalibrationswereinvolved. EgyptisthecountryoftheNileandthepyramids,andit isnotsurprisingthatgreat accuracywasattemptedwithregardtobothofthese.Theannualautumnfloodingofthe Nile, caused aswenow know by high summerrainfall in Ethiopia,helped the fertility ofEgyptianfieldsbyspreadingquantitiesofsilt.Torecordlevelsupstream,aNilometer wassetuponPhilaeIsland,whichisnowsubmergedbythelakeoftheAswandam.Strnho describes it as a well, in which the level ofthe Nilecould be read from markson the side.Fromsuchreadings,scribescouldregisterthemaximum,minimumandmeanlevels ofthewaterin cubits. Asis known from ancientwriters,annual compilationsofsuch readings werecarefully preserved, butthesehavenot themselvessurvived. A Nilometer atMemphis(Cairo) ismentionedby Hcliodorus,andsimilargaugeshavebeen foundat Edfu,Luxorandelsewhere,withcubitmarkingsmostlybetween52.Sand53..^cmabove theriver'slowlevel. Whenthefloodsreceded,manylandowners'boundarymarkshadinevitablybeenwashed away,so itwas importantthatsuneyingshould becarried outimmediately.Thereare Egyptianrepresentationsofsurveyorsemployingknottedropes(theknotsindicatingsub- divisionsoflinearmeasurement),themerkhet(asplitcentre-ribofapalm-leaf,used for 2 Reproductionof.imerkhcl,anF.f;yptiansurveyinginstrument.Themerkhetwasalinncdonan objectbylookingthroughthesplitcentre,heldupwards,itwasusedwithashortplumb-lineand plummet.London,Science.Museum. 1 sighting),and measuringrods.Thepriests inauguratedthis rapid re-surveyoftheland, whichhadtobereadyforwintercultivation.Thereisnoevidencethatlandsurveymaps wereusedindynasticEgyptforthisoperation.Butbymeansofexactareameasurements and verbal descriptions, the status quo was re-established. Graeco-Roman writers from Herodotus(c.484-^.420bc)rightdowntoCassiodorus{c.ad490-c:.583)attributetheori- ginsofgeometr)',literally'measuringoftheearth',tothispractice. Egyptian numerals werebasedon thedecimal system,thehighestvaluesbeingplaced ontheleft. Uptonineofthesamesymbolcouldbeused,arranged inoneortwolines. Thehieroglyphicsignsare: 1 10,000 10 100,000 100 1,000,000 1000 Examplesare: 465 ttn1111 4323 nm?r. Thesign for 1,000,000disappeared inearlytimes,andafteritsdisappearanceasystem ofmultiplication,byplacingonenumberoveranother,wassometimesused;forexample, 1,100,000=100,000X II= ^ Themost famous mathematical work from dynastic Egypt isthe Rhindmathematical papyrus,copiedbythescribeAhmcsorAhmosefromapapyrusof1849-1801bc.Itwas boughtbyA.H.RhindatI.uxorin1858andisnowintheBritishMuseum.Initsgeometry wecan seesome understandingofthepropertiesofright-angledtriangles, includingthe simplestones, which havesidesthatareintegralnumbersofunitsm length (3,4,5;5, 12, 13).Alsoincludedisanapproximationfortt,theratioofthecircumferenceofacircle toitsdiameter;thevaluegivenis(v)'=3.1604938,loolargebyabout0.019, 1-3 3 PartoftheRhindmathematicalpapyrus,dealingwiththecalculationof.ircas.StvonJIntermediate Period,c.1575BC.BritishMuseum. 9 TheRhindpapyrushasseveralarithmeticalproblems,suchasthefollowing:*Aquantity whosehalfisaddedtoitbecomes16*;inodierwords,'findfof16*.Theworkingsare asfollows: 1(a)2 •I(bS) ^1 2 6 4 12 13 2 » 1 1 Table(a)showsthatilicdivisorshouldhe^.Thepurposeoftahlefh)istofindone-third of 16. Column2multiphescolumn I by three. Theasteriskeditemsareaddedtogether becausethecorrespondingnumbersintheright-handcolumnaddupto16.Thisestablishes that1+4+ thatis,5i^i$one-thirdof16.Since|of16istobefound,theremaining workingsare: (c) 1 5i 2 10^ Geometrywasequallyrequiredtortheconstructionofpyramids.Inthefirstplace,care wasoftentakentoachieveorientationnorth,south,eastandwest.North-southorientation couldeasilybeobtainedbyfindingthedirectionofthenooiulav sun.Averticalpolewas setupin thesandasagnomon.Thenthepathtraversedbythetipofitsshadow(.oiild heobserved. Thepoints A and B. where ihis intersected asuitablecircledrawn around thegnomon, wouldbejoined. Then the hue Aii was bisected toestabhsh thedirection ofthesunatmid-day.Apossiblealternativemethod,outlinedbyI.E.S.EdwardsinThe PyramidsofEgypt^wouldhavebeentobisecttheangleformedbytherisingandsetting positionsofastar. Egyptianpyramids(withtheexceptionotthemostancient,theSaqqarasteppyramid) weresquareinground-planandfullypyramidalinshape.Thespecificationforthegradient, knownasthe'batter*,ofsuchpyramidswasdenotedbythehieroglyphicwordikd^meaning ratio.Itwasexpressedinterm^ofthenumberofpa'ms. inhalfdielengthofaside,per cubitotvertical height (I cubit="palms).The Rhiiul papyrusisparticularlyconcerned withthegeometryofpyramids,measurementsbemgreckonedinroyalcubits(seechapter 4).Anexampleoffindingthebatteris:'Apyramidwhoseverticalheightis93-, jcubitsj. Letmeknowitsbatter, 140 [cubits] beingthelengthofitsside.*Halfthelengthofa sideis7X70palms;thebatteristherefore: 70 210 since1palm=4ringer's-breadths,thisisexpressedas5palms,1tinger's-brcadth. ThedimensionsandorientationoftheGreatPyramidwereverycarefullyfixed.Like a numberofdynastic Egyptian buildings, its sidesfacethefourpointsofthecompass. nMaerarsouwrleym—enmtosstalryebientwwheoelne52n.i3michmersanodf5r2oy.a5lcmc,ubiwtist,hoaftnenavreoruangdeeiolfo5f2t,.3w6hcimc.hTvhaerymoenalny ofthefourbaselengths,whichareverynearlyequal,is440cubits.Theoriginalheight fromplatformtoapexwas280cubits,givingabatter,asdefinedabove,of5^palms. Thelengthofthedescendingpassage is75cubits.Thefloorlengthofthegrandgallery is 88 cubits, one-fifth ofthe base length. The king'schamberis 20cubits long and 10 cubitsbroad;itsheightis 11 cubits,againafactorofthebaselength,at52.5cmtothe cubit. ContrastingsomewhatwiththisprecisionistheclumsinessoftheEgyptianmethodof expressingfractions.Apartfrom},only'simple'fractionswereused,thatis,thosehaving Copyrightedmaterial

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.