Continuous Distributions Moment- Generating Distribution ProbabilityFunction Mean Variance Function Uniform f(y)= 1 ;θ ≤y≤θ θ1+θ2 (θ2−θ1)2 etθ2−etθ1 θ −θ 1 2 2 12 t(θ −θ ) 2 1 2 1 (cid:1) (cid:2) (cid:3) (cid:4) (cid:5) 1 1 t2σ2 Normal f(y)= √ exp − (y−µ)2 µ σ2 exp µt+ σ 2π 2σ2 2 −∞<y<+∞ Exponential f(y)= 1e−y/β; β>0 β β2 (1−βt)−1 β 0<y<∞ (cid:1) (cid:4) Gamma f(y)= (cid:5)(α1)βα yα−1e−y/β; αβ αβ2 (1−βt)−α 0<y<∞ Chi-square f(y)= (y)(v/2)−1e−y/2; v 2v (1−2t)−v/2 2v/2(cid:5)(v/2) y2>0 (cid:1) (cid:4) (cid:5)(α+β) α αβ Beta f(y)= yα−1(1−y)β−1; doesnotexistin (cid:5)(α)(cid:5)(β) α+β (α+β)2(α+β+1) closedform 0<y<1 Discrete Distributions Moment- Generating Distribution ProbabilityFunction Mean Variance Function (cid:6) (cid:7) Binomial p(y)= n py(1−p)n−y; np np(1−p) [pet+(1−p)]n y y=0,1,...,n Geometric p(y)= p(1−p)y−1; 1 1−p pet p p2 1−(1−p)et y=1,2,... (cid:6) (cid:7)(cid:6) (cid:7) r N−r (cid:6) (cid:7)(cid:2) (cid:3)(cid:2) (cid:3) Hypergeometric p(y)= y(cid:6) n(cid:7)−y ; nr n r N−r N−n N N N N N−1 n y=0,1,...,nifn≤r, y=0,1,...,rifn>r λye−λ Poisson p(y)= ; λ λ exp[λ(et−1)] y! y=0,1,2,... Negativebinomial p(y)=(cid:6)y−1(cid:7)pr(1−p)y−r; r r(1−p) (cid:1) pet (cid:4)r r−1 p p2 1−(1−p)et y=r,r+1,... MATHEMATICAL STATISTICS WITH APPLICATIONS This page intentionally left blank SEVENTH EDITION Mathematical Statistics with Applications Dennis D. Wackerly UniversityofFlorida William Mendenhall III UniversityofFlorida,Emeritus Richard L. Scheaffer UniversityofFlorida,Emeritus Australia•Brazil•Canada•Mexico•Singapore•Spain UnitedKingdom•UnitedStates MathematicalStatisticswithApplications,SeventhEdition DennisD.Wackerly,WilliamMendenhallIII,RichardL.Scheaffer StatisticsEditor:CarolynCrockett ArtDirector:VernonBoes AssistantEditors:BethGershman,CatieRonquillo PrintBuyer:KarenHunt EditorialAssistant:AshleySummers ProductionService:MatrixProductionsInc. TechnologyProjectManager:JenniferLiang CopyEditor:BettyDuncan MarketingManager:MandyJellerichs CoverDesigner:ErikAdigard,PatriciaMcShane MarketingAssistant:AshleyPickering CoverImage:ErikAdigard MarketingCommunicationsManager:Darlene CoverPrinter:TK Amidon-Brent Compositor:InternationalTypesettingandComposition ProjectManager,EditorialProduction:HalHumphrey Printer:TK ©2008,2002Duxbury,animprintofThomson ThomsonHigherEducation Brooks/Cole,apartofTheThomsonCorporation. 10DavisDrive Thomson,theStarlogo,andBrooks/Colearetrademarks Belmont,CA94002-3098 usedhereinunderlicense. USA ALLRIGHTSRESERVED.Nopartofthiswork Formoreinformationaboutourproducts,contact coveredbythecopyrighthereonmaybereproduced usat:ThomsonLearningAcademicResource orusedinanyformorbyanymeans—graphic,electronic, Center1-800-423-0563 ormechanical,includingphotocopying,recording, Forpermissiontousematerialfromthistextor taping,webdistribution,informationstorageandretrieval product,submitarequestonlineat systems,orinanyothermanner—withoutthewritten http://www.thomsonrights.com. permissionofthepublisher. Anyadditionalquestionsaboutpermissions canbesubmittedbye-mailto PrintedintheUnitedStatesofAmerica [email protected]. 1 2 3 4 5 6 7 14 13 12 11 10 09 08 07 ExamView®andExamViewPro®areregistered trademarksofFSCreations,Inc.Windowsisaregistered trademarkoftheMicrosoftCorporationusedhereinunder license.MacintoshandPowerMacintoshareregistered trademarksofAppleComputer,Inc.Usedhereinunder license. ©2008ThomsonLearning,Inc.AllRightsReserved. ThomsonLearningWebTutorTMisatrademarkof ThomsonLearning,Inc. InternationalStudentEdition ISBN-13:978-0-495-38508-0 ISBN-10:0-495-38508-5 CONTENTS Preface xiii NotetotheStudent xxi 1 What Is Statistics? 1 1.1 Introduction 1 1.2 CharacterizingaSetofMeasurements:GraphicalMethods 3 1.3 CharacterizingaSetofMeasurements:NumericalMethods 8 1.4 HowInferencesAreMade 13 1.5 TheoryandReality 14 1.6 Summary 15 2 Probability 20 2.1 Introduction 20 2.2 ProbabilityandInference 21 2.3 AReviewofSetNotation 23 2.4 AProbabilisticModelforanExperiment:TheDiscreteCase 26 2.5 CalculatingtheProbabilityofanEvent:TheSample-PointMethod 35 2.6 ToolsforCountingSamplePoints 40 2.7 ConditionalProbabilityandtheIndependenceofEvents 51 2.8 TwoLawsofProbability 57 v vi Contents 2.9 CalculatingtheProbabilityofanEvent:TheEvent-Composition Method 62 2.10 TheLawofTotalProbabilityandBayes’Rule 70 2.11 NumericalEventsandRandomVariables 75 2.12 RandomSampling 77 2.13 Summary 79 3 Discrete Random Variables and Their Probability Distributions 86 3.1 BasicDefinition 86 3.2 TheProbabilityDistributionforaDiscreteRandomVariable 87 3.3 TheExpectedValueofaRandomVariableoraFunction ofaRandomVariable 91 3.4 TheBinomialProbabilityDistribution 100 3.5 TheGeometricProbabilityDistribution 114 3.6 TheNegativeBinomialProbabilityDistribution(Optional) 121 3.7 TheHypergeometricProbabilityDistribution 125 3.8 ThePoissonProbabilityDistribution 131 3.9 MomentsandMoment-GeneratingFunctions 138 3.10 Probability-GeneratingFunctions(Optional) 143 3.11 Tchebysheff’sTheorem 146 3.12 Summary 149 4 Continuous Variables and Their Probability Distributions 157 4.1 Introduction 157 4.2 TheProbabilityDistributionforaContinuousRandomVariable 158 4.3 ExpectedValuesforContinuousRandomVariables 170 4.4 TheUniformProbabilityDistribution 174 4.5 TheNormalProbabilityDistribution 178 4.6 TheGammaProbabilityDistribution 185 4.7 TheBetaProbabilityDistribution 194 Contents vii 4.8 SomeGeneralComments 201 4.9 OtherExpectedValues 202 4.10 Tchebysheff’sTheorem 207 4.11 ExpectationsofDiscontinuousFunctionsandMixedProbability Distributions(Optional) 210 4.12 Summary 214 5 Multivariate Probability Distributions 223 5.1 Introduction 223 5.2 BivariateandMultivariateProbabilityDistributions 224 5.3 MarginalandConditionalProbabilityDistributions 235 5.4 IndependentRandomVariables 247 5.5 TheExpectedValueofaFunctionofRandomVariables 255 5.6 SpecialTheorems 258 5.7 TheCovarianceofTwoRandomVariables 264 5.8 TheExpectedValueandVarianceofLinearFunctions ofRandomVariables 270 5.9 TheMultinomialProbabilityDistribution 279 5.10 TheBivariateNormalDistribution(Optional) 283 5.11 ConditionalExpectations 285 5.12 Summary 290 6 Functions of Random Variables 296 6.1 Introduction 296 6.2 FindingtheProbabilityDistributionofaFunction ofRandomVariables 297 6.3 TheMethodofDistributionFunctions 298 6.4 TheMethodofTransformations 310 6.5 TheMethodofMoment-GeneratingFunctions 318 6.6 MultivariableTransformationsUsingJacobians(Optional) 325 6.7 OrderStatistics 333 6.8 Summary 341