ebook img

Mathematical Statistics for Econometrics and Business - Springer PDF

138 Pages·2013·1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Statistics for Econometrics and Business - Springer

Student Answer Key Odd Questions Only All rights reserved © For information contact Ron C. Mittelhammer, WSU, [email protected] For corrections, please contact Danielle Engelhardt [email protected] Chapter 1 – Student Answer Key – Odd Numbers Only Elements of Probability Theory 1. a) {0, 1, 2, ..., 100} b) {0, 1, 2, ..., N}, N = number of ads circulated c) x,y:x y, x and y459.67, 212 (while perhaps conservative, the temperature range has been designated to be between absolute zero and the boiling point). d) x:0 x c, where c is delivery capacity of the jobber in a given week. e) {w: w = $x.yz, x is a nonnegative integer, y and z ϵ{0, 1, 2,..., 9}}. f) {x: x is a nonnegative integer} 3. a) A = {Karen, Wendy, Brenda} P(A) = 3/8. b) A = {Tom, Richard} P(A) = 1/4. c) A = {Karen, Frank, Scott} P(A) = 3/8. d) A = {Frank, Scott} P(A) = 1/4. e) A = {∅} P(A) = 0. f) A = {Tom, Karen, Frank, Eric, Wendy, Brenda, Scott, Richard} P(A) = 1. 5. Let S x ,x ,x :x ,x ,x are three jokes chosen randomly from an inventory of 12 1 2 3 1 2 3 jokes}. S is a finite sample space, has equally likely outcomes, and 12! N(S)   220, 3!9! Chapter 1 – Student Answer Key – Odd Numbers Only 2 represents the different combination of 12 jokes taken 3 at a time. a) We need to count the number of ways in which 2 or all three jokes can be different from the previous month’s three jokes, say x0,x0,x0. 1 2 3 9 Let A = 2 jokes are different. Then N(A)  3   108. 2 9 Let B = all three are different. Then N(B)   84.   3 N(AB) 192 So, PAB  .8727. 220 220 N(B) 84 b) PB   .3818. 220 220 7. NOTE: Each staff member has violated the axioms and theorems of probability, and there is more than one way to characterize the violation. In each case we identify one such characterization. PA A   PA  or PA  Tom: 1 2 1 2 . .9  .5 or .3 PA A A   1 Dick: 1 2 3 . 1.5  1 PA  0 Harry: 3 . .4 0 P(A  A) .3 Sally: PA |A 3 1  1.51. 3 1 P(A) .2 1 9. .05(1000) (cid:3404) 50 chips will be inspected and there are 5 detectives in total. Let A  {event of picking a nondefective chip on ith draw} i Elements of Probability Theory Mathematical Statistics for Economics and Business Chapter 1 – Student Answer Key – Odd Numbers Only 3 50  i1  P(accepting shipment)  P(A) P(A | A)  PA | A , 1 2 1 i j  j1  i3 995 994 946 995! 1000! 950! 1000!  • • ...•            , 1000 999 951 945!  950!  945!  995!   .7734. 11. To show Axioms 1-3 are satisfied: PA|B0 A since PAB0, PB0, and B thus PAB/ PB0. PB|B PBB/ PB PB/ PB1. Let A,iI be disjoint subsets of B. Then i      P A  B P A B PA |B iI i  iI i iI i P(B) P(B)  PA B  iI i  PA |B. P(B) i iI since A B,iI, are disjoint events. i 13. Let D (cid:3404) {secretary dissatisfied} A (cid:3404) {dislikes supervisor} 1 A (cid:3404) {not paid enough} 2 A (cid:3404) {dislikes type of work} 3 A (cid:3404) {conflict with other employees} 4 Note: A  D, A A  for i  j, and 4 A  D, so the A 's form a partition of D. i i j i1 i i Let Q D be the event that a dissatisfied secretary quits her job. We are given the following: P(D) (cid:3404) .20 P(Q|A ) (cid:3404) .20 1 P(A |D) (cid:3404) .55 P(Q|A ) (cid:3404) .30 1 2 P(A |D) (cid:3404) .30 P(Q|A ) (cid:3404) .90 2 3 P(A |D) (cid:3404) .10 P(Q|A ) (cid:3404) .05 3 4 P(A |D) (cid:3404) .05 4 a) Need to determine the PA |Q values; therefore, using Bayes rule, we have: i Elements of Probability Theory Mathematical Statistics for Economics and Business Chapter 1 – Student Answer Key – Odd Numbers Only 4 PQ| APA PA |Q i i , i 4 PQ| APA i1 i i PA D PA Now, PA |D i  i  PA PA |DPD, allowing us to rewrite i PD PD i i Bayes rule as: PQ| APA |DPD PA |Q i i , i 4 PQ| APA |DPD i1 i i where 4 PQ| APA |D(.20)(.55)  (.30)(.30)  (.90)(.10)  (.05)(.05)  .2925. i1 i i Then PQ| A PA |D (.20)(.55) PA |Q 1 1   .3761 1 .2925 .2925 (.30)(.30) PA |Q  .3077  The most probable reason is that she disliked her supervisor. 2 .2925 (.90)(.10) PA |Q  .3077 3 .2925 (.05)(.05) PA |Q  .0085 4 .2925 b) A  D  PA  PA |DPD(.30)(.20).06. 2 2 2 c) PQ|D PQD/PD   4   PQA / PD,  i1 i 4 PQA   i (since  distributive and QA, i 1,...,4 are disjoint), PD i i1 4 PQA PA   i i , PA PD i1 i 4   PQ| APA |D since PA PA |DPD, i i i i i1  .2925.       15. a) Yes. Using DeMorgan’s Laws, note that P A A .18P A P A , 1 2 1 2 Elements of Probability Theory Mathematical Statistics for Economics and Business Chapter 1 – Student Answer Key – Odd Numbers Only 5             P A A .2475P A P A , and P A A .22P A P A , so that Theorem 1 3 1 3 2 3 2 3 1.12 can then be applied. b) No. Note that PA A | A .20, but PA A  PA PA PA A  2 3 1 2 3 2 3 2 3 .60.45.78.27, so conditional and unconditional probabilities are different. c) PA A A  PA A | A PA  PA A |A  1 2 3  2 3 1 1 1 2 3 PA  PA  3 3 (.20)(.55)  .244 .45 d) Yes, different since PA A PAPA PA A .33. Theorem 1.5 can be 1 2 1 2 1 2 extended by letting A A, BA A ,  PA A A  PA PA PA  1 2 3 1 2 3 1 2 3 PA A PA A PA A PA A A , 1 2 1 3 2 3 1 2 3 or PA A A  PA PA PA PA PA PA A  1 2 3 1 2 3  1 2 1 2  PA PA PA A PA PA PA A   1 3 1 3   2 3 2 3  PA A A  1 2 3  PA A A PA A PA A PA A  1 2 3 1 2 2 3 1 3 PA PA PA  1 2 3 .11.82.78.7525.55.60.45 .8625. 17. P(B|I) (cid:3404) .04, P(B|II) (cid:3404) .01. P(I) (cid:3404) .85, P(II) (cid:3404) .15. a) P(B|II )P(II) P(II |B)  (Bayes Rule) P(B|II ) P(II)  P(B|I )P(I ) (.01)(.15)   .04225. (.01)(.15)  (.04)(.85) b) PA|B1PA|B1.985.015. Elements of Probability Theory Mathematical Statistics for Economics and Business Chapter 1 – Student Answer Key – Odd Numbers Only 6 c) PA|BPB PB| A (Bayes Rule) PA|BPB  PA|BPB (.985)(.04)   .73234 (.985)(.04)  (.015)(.96) The testing device is not especially accurate. 19. a) P(AB)  .20, P(A)P(B)  (.40)(.40)  .16, P(AB)  P(A)P(B)  A and B are not pairwise independent. P(AC)  .15 P(A)P(C)  (.40)(.375)  .15 P(AC)  P(A) P(C)  A and C are pairwise independent. P(BC)  .15 P(B)P(C)  (.40)(.375)  .15 P(BC)  P(B) P(C)  B and C are pairwise independent. b) No, pairwise independence is a necessary (not sufficient) condition for joint independence. Since A and B are not pairwise independent, we know immediately that A, B, and C are not jointly independent. c) P(A∩B) = .20 P((AB)C) .10 PAB|C   .267 P(C) .375 d) Given DABC DA, then PDA0. But PDPA.05.40.020 D and A are not independent. Given PDABC0, then PDPABC.05.775.038750 D and ABC are not independent. P(C(AB)) .10 e) PC|AB   .50 P(AB) .20 Elements of Probability Theory Mathematical Statistics for Economics and Business Chapter 1 – Student Answer Key – Odd Numbers Only 7 21. a) The numerator of this function will always be (cid:3410) 0 for any A⊂S (it will equal 0 when A(cid:3404)∅). The denominator is always positive. This implies P(A) (cid:3410) 0, for any event A⊂S, thus Axiom 1.1 holds. P(S) = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)/36 = 1, thus Axiom 1.2 holds. Let {A: iϵI} be a collection of disjoint events contained in S. Then i P A   x/36  (x/36) (since A 's disjoint) P(A),  i i i iI xA iI xAi iI iI i Axiom 1.3 holds . All three axioms hold implying this is a valid probability set function. b) The integrand ex 0x, so that the integral of ex over any event in the event space must be (cid:3410)0, which implies Axiom 1.1 holds. S  [0,), so P(S) exdxlim (en  e0)1  lim en1 0 n n  Axiom 1.2 holds . PA    ex dx    exdx (valid given the A’s are disjoint)=  PA   i i i iI x Ai iI xAi iI iI   Axiom 1.3 holds . All three axioms hold implying this is a valid probability set function. c) This is not a probability set function. To see why, consider Axiom 1.2, i.e., P(S) =1.  1  P(S)   x2/105   x2  , 105 i1 i1  Axiom 1.2 does not hold . d) Consider the integrand f(x)(cid:3404)12x(1(cid:3398)x)2. Notice that f(x) is a positive valued function over the domain S (cid:3404) (0,1), implying that any integral of this function over events in the event space will always be nonnegative. Thus Axiom 1.1 holds. Axiom 1.2 holds, since P(S)112x1x2dx 6x2 8x3 3x4|1 1. 0 0 Finally, PA   12x1x2dx    12x1x2dx   P(A)  i i iI xiIAi iI xAi iI  Axiom 1.3 holds. Elements of Probability Theory Mathematical Statistics for Economics and Business Chapter 1 – Student Answer Key – Odd Numbers Only 8 All three axioms hold, implying this is a valid probability set function. 23. a) S (cid:3404) {(x,y): x and y ϵ{1, 2, 3, 4}} b) A (cid:3404) {(x,y): x = 1 or 3, yϵ{1, 2, 3, 4}} (First disk is a 1 or 3). B (cid:3404) {(x,y): y = 1 or 2, xϵ{1, 2, 3, 4}} (Second disk is a 1 or 2). N(S) (cid:3404) 16, N(A) (cid:3404)8, N(B) (cid:3404) 8, N(A∩B) (cid:3404)4. 4  8  8  P(A∩B) (cid:3404) =    (cid:3404) P(A) P(B) ⇒ independence. 16 1616 c) A (cid:3404) {(x, y): x (cid:3404) 1, yϵ{1, 2, 3, 4}} B (cid:3404) {(x, y): y (cid:3404)1, xϵ{1, 2, 3, 4}} N(A) (cid:3404)4, N(B) (cid:3404) 4, N(AB) (cid:3404)1 1  4  4  P(A∩B) (cid:3404) =    (cid:3404)P(A) P(B)  independence. 16 1616 d) A (cid:3404) {(1,1)} B (cid:3404) {(x, y): x and y ϵ{1, 2}} (neither 3 or 4 is chosen in the selection process) N(A) = 1, N(B) = 4, N(A∩B) = 1 1 1 4 P(A∩B) =   =P(A) P(B)  not independent. 16 16 16 25. a) PA|B1PA|B.02. PA|BPB (.98)(.05) b) PB| A  PA|BPBPA|BPB (.98)(.05)  (.02)(.95) P(B|A)  .7206. c) From Bayes Rule r (.05) .95   r = .9972. r (.05)  (1r)(.95) Elements of Probability Theory Mathematical Statistics for Economics and Business Chapter 1 – Student Answer Key – Odd Numbers Only 9 27. a) S = {(x, y): x and y {0, 1, 2, 3, 4}}. b) Yes. Let f(x, y) represent the probability of selling x number of printers and y number of computers, as displayed in the table. Then if A is an event contained in S, P(A) =   f(x, y). (x,y)A c) Let A = {(x, y): y = 3 or 4, x{0, 1, 2, 3, 4}} (more than two computers sold) P(A) =  f(x, y) = .56. (x,y)A Let B = {(x, y): x = 3 or 4, y{0, 1, 2, 3, 4}} (more than two printers sold) P(B) =   f(x, y) = .50. (x,y)B P(x  2,y  2) .40 d) P(x > 2 | y > 2) = = = .7143. P(y  2) .56 e) P(x > 2, y > 2) = .10 + .10 + .05 + .15 = .40. f) f(0, 0) = .03, P(x 0, y 0) .03 P(x=0  y = 0) = = = .375. P(y 0) .08 29. a) Total number of invoices = 529. Number of invoices from sales team C = 129. Probability that a randomly selected invoice is from sales team C = 129/529 =0.2439. b) Total number of invoices = 529. Number of invoices over 180 days old = 72. Probability that a randomly selected invoice is from sales team C = 72/529 =0.1361. c) Total number of invoices = 529. Number of invoices over 180 days old and from sales team C= 19. Probability that a randomly selected invoice is over 180 days old and from sales team C=19/529 =0.0354. Sales team A has the lowest probability (0.1493) of being associated with a randomly selected invoice. Elements of Probability Theory Mathematical Statistics for Economics and Business

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.