ebook img

Mathematical Principles of Theoretical Physics PDF

518 Pages·2016·4.08 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Principles of Theoretical Physics

Mathematical Principles of Theoretical Physics TianMa ShouhongWang March 30,2015 2 To our families ii Preface The objectivesofthis bookare to deriveexperimentallyverifiablelawsofNature basedon a few fundamentalmathematicalprinciples, and to providenew insights and solutionsto a number of challenging problems of theoretical physics. This book focuses mainly on the symbioticinterplaybetweentheoreticalphysicsandadvancedmathematics. The greatsuccess and experimentalverificationof both Albert Einstein’s theory of rel- ativity and quantum mechanics have placed them as cornerstonesof modern physics. The fundamentalprinciplesofbothrelativityandquantummechanicsarethestartingpointofthe studyundertakeninthisbook. JamesClerkMaxwell’sdiscoveryoftheMaxwellequationsmarksthebeginningofthe field theory and the gauge theory. The quantum electrodynamics(QED) is beautifully de- scribedbytheU(1)abeliangaugetheory. Thenon-abelianSU(N)gaugetheorywasorigi- natedfromtheearly workof (Weyl, 1919;Klein, 1938;YangandMills, 1954). Physically, gauge invariance refers to the conservation of certain quantum property of the interacting physicalsystem. Such quantumpropertyof N particles cannotbe distinguished for the in- teraction. Consequently, the energy contribution of these N particles associated with the interactionisinvariantunderthegeneralSU(N)phase(gauge)transformations. Thesuccessandexperimentalsupportofthegaugetheoryindescribingtheelectromag- netism, thestrongandtheweakinteractionsclearlydemonstratethattheprincipleofgauge invarianceisindeedaprincipleofNature. Wehave,atourdisposal,theprincipleofgeneralrelativity,theprincipleofLorentzinvari- ance(specialtheoryofrelativity),andtheprincipleofgaugeinvariance.Thesearesymmetry principles. Wecanshowthatthesesymmetryprinciples,togetherwiththesimplicityoflaws ofNature,dictatetheactionsofthefourfundamentalinteractionsofNature: thegravity,the electromagnetism,thestrongandtheweakinteractions. Modern theoretical physics also faces great challenges and mysteries. For example, in astrophysicsandcosmology,themostimportantchallengesandmysteriesinclude1)theun- explaineddarkmatteranddarkenergyphenomena,2)theexistenceandpropertiesofblack holes, 3)the structureandoriginof ourUniverse,and 4)the mechanismof supernovaeex- plosionandactivegalacticnucleusjets. Inparticlesphysics,thenatureofHiggsfields,quark confinementandtheunificationoffourfundamentalinteractionsareamongthegrandchal- lenges. Thebreakthroughofourworkpresentedinthisbookandinasequenceofpaperscomes from our recent discovery of three new fundamental principles: the principle of interac- tiondynamics(PID),theprincipleofrepresentationinvariance(PRI)(MaandWang,2014e, iii iv 2015a,2014h),andtheprincipleofsymmetry-breaking(PSB)(MaandWang,2014a). Basically,PIDtakesthevariationoftheLagrangianactionundertheenergy-momentum conservationconstraints. Forgravity,PIDisthedirectconsequenceofthepresenceofdark energyanddarkmatter. Fortheweakinteraction,PIDistherequirementofthepresenceof theHiggsfield. Forthestronginteraction,wedemonstratedthatPIDistheconsequenceof thequarkconfinementphenomena. PRI requires that the gauge theory be independentof the choices of the representation generators. These representation generators play the same role as coordinates, and in this sense,PRIisacoordinate-freeinvariance/covariance,reminiscentoftheEinsteinprincipleof generalrelativity.Inotherwords,PRIispurelyalogicrequirementforthegaugetheory. PSB offers an entirely different route of unification from the Einstein unification route which uses large symmetry group. The three sets of symmetries — the generalrelativistic invariance,theLorentzandgaugeinvariances,aswellas theGalileo invariance—are mu- tually independentand dictate in partthe physicallaws in differentlevels of Nature. For a systemcouplingdifferentlevelsofphysicallaws,partofthesesymmetriesmustbebroken. Thesethreenewprincipleshaveprofoundphysicalconsequences,and,inparticular,pro- videanewrouteofunificationforthefourinteractions: 1) thegeneralrelativityandthegaugesymmetriesdictatetheLagrangian; 2) the couplingof the fourinteractionsis achievedthrough PID and PRI in theunifiedfieldequations,whichobeythePGRandPRI,butbreaksponta- neouslythegaugesymmetry; 3) theunifiedfieldmodelcanbeeasilydecoupledtostudyindividualinterac- tion,whentheotherinteractionsarenegligible;and 4) theunifiedfieldmodelcouplingthematterfieldsusingPSB. Themainpartofthisbookistoestablishsuchafieldtheory,andtoprovideexplanations and solutionsto a numberof challengingproblemsand mysteries such as those mentioned above. Anotherpartofthebookisonbuildingaphenomenologicalweaktonmodelofelementary particles, based on the new field theory that we established. This model explains all the subatomicdecaysandscattering,andgivesrisetonewinsightsonthestructureofsubatomic particles. Ournewfieldtheoryisbasedsolelyonafewfundamentalprinciples. Itagreeswithall therelatedexperimentsandobservations,andsolvesmanychallengingproblemsinmodern physics. Inthissense,itshouldreflectthetruthoftheNature! Inretrospect,mostattemptsinmodernphysicsregardingtothechallengesandmysteries mentioned earlier focus on modifying, on an ad hoc basis, the basic Lagrangian actions. Even with careful tuning, these artificial modifications often lead to unsolvable difficulties andconfusionsonmodel-buildingandontheunderstandingoftherelatedphenomena. The PID approach we discovered is the first principle approach, required by the phenomenaas thedarkmatter,darkenergy,quarkconfinement,andtheHiggsfield. Itleadstodualfields, whicharenotachievablebyothermeans.Hencewebelievethatthisistheveryreasonbehind theconfusionsandchallengesthatmodernphysicshasfacedformanydecades. Chapter 1, General Introduction, is written for everyone. It synthesizes the main ideas and results obtained in this book. Chapter 2 developsthe general view and basic physical v backgroundsneededforlaterchapters. Chapter3providestheneededmathematicalfounda- tionsforPID,PRIandthegeometryfortheunifiedfields. Morephysicalorientedreaderscan jumpdirectlytolaterchapters,Chapters4-7,forthemainphysicaldevelopments. The research presented in this book was supported in part by grants from the US NSF and the Chinese NSF. The authors are most grateful for their advice, encouragement, and consistentsupportfromLouisNirenberg,RogerTemam,andWenyuanChenthroughoutour scientific career. Our warm thanks to Jie Shen, Mickael Chekroun, Xianling Fan, Kevin Zumbrun,WenMastersandRezaMalek-Madanifortheirsupport,insightfuldiscussionsand appreciationforhiswork. Lastbutnotleast,wewouldliketoexpressourgratitudetoourwives,LiandPing,and ourchildren,Jiao,MelindaandWayne,fortheirloveandappreciation. Inparticular,weare mostgratefulforLiandPing’sunflinchingsupportandunderstandingduringthelongcourse ofouracademiccareer. March30,2015 Chengdu,China TianMa Bloomington,IN ShouhongWang vi Contents 1 GeneralIntroduction 1 1.1 ChallengesofPhysicsandGuidingPrinciple. . . . . . . . . . . . . . . . . . 1 1.2 LawofGravity,DarkMatterandDarkEnergy . . . . . . . . . . . . . . . . . 3 1.3 FirstPrinciplesofFourFundamentalInteractions . . . . . . . . . . . . . . . 6 1.4 SymmetryandSymmetry-Breaking . . . . . . . . . . . . . . . . . . . . . . 11 1.5 UnifiedFieldTheoryBasedOnPIDandPRI . . . . . . . . . . . . . . . . . 13 1.6 TheoryofStrongInteractions . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.7 TheoryofWeakInteractions . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.8 NewTheoryofBlackHoles . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 TheUniverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.10 SupernovaeExplosionandAGNJets . . . . . . . . . . . . . . . . . . . . . . 25 1.11 Multi-ParticleSystemsandUnification . . . . . . . . . . . . . . . . . . . . . 26 1.12 WeaktonModelofElementaryParticles . . . . . . . . . . . . . . . . . . . . 28 2 FundamentalPrinciplesofPhysics 33 2.1 EssenceofPhysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.1 Generalguidingprinciples . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.2 Phenomenologicalmethods . . . . . . . . . . . . . . . . . . . . . . 35 2.1.3 Fundamentalprinciplesinphysics . . . . . . . . . . . . . . . . . . . 36 2.1.4 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1.5 Invarianceandtensors . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.6 Geometricinteractionmechanism . . . . . . . . . . . . . . . . . . . 42 2.1.7 Principleofsymmetry-breaking . . . . . . . . . . . . . . . . . . . . 44 2.2 LorentzInvariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.1 Lorentztransformation . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.2 MinkowskispaceandLorentztensors . . . . . . . . . . . . . . . . . 47 2.2.3 Relativisticinvariants . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2.4 Relativisticmechanics . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.5 Lorentzinvarianceofelectromagnetism . . . . . . . . . . . . . . . . 54 2.2.6 Relativisticquantummechanics . . . . . . . . . . . . . . . . . . . . 56 2.2.7 Diracspinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.3 Einstein’sTheoryofGeneralRelativity . . . . . . . . . . . . . . . . . . . . 60 2.3.1 Principleofgeneralrelativity. . . . . . . . . . . . . . . . . . . . . . 60 2.3.2 Principleofequivalence . . . . . . . . . . . . . . . . . . . . . . . . 61 vii viii CONTENTS 2.3.3 Generaltensorsandcovariantderivatives . . . . . . . . . . . . . . . 63 2.3.4 Einstein-Hilbertaction . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.3.5 Einsteingravitationalfieldequations. . . . . . . . . . . . . . . . . . 68 2.4 GaugeInvariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.4.1 U(1)gaugeinvarianceofelectromagnetism . . . . . . . . . . . . . . 70 2.4.2 GeneratorrepresentationsofSU(N) . . . . . . . . . . . . . . . . . . 72 2.4.3 Yang-MillsactionofSU(N)gaugefields . . . . . . . . . . . . . . . 74 2.4.4 Principleofgaugeinvariance. . . . . . . . . . . . . . . . . . . . . . 78 2.5 PrincipleofLagrangianDynamics(PLD) . . . . . . . . . . . . . . . . . . . 79 2.5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 2.5.2 Elasticwaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.5.3 Classicalelectrodynamics . . . . . . . . . . . . . . . . . . . . . . . 82 2.5.4 Lagrangianactionsinquantummechanics . . . . . . . . . . . . . . . 86 2.5.5 Symmetriesandconservationlaws . . . . . . . . . . . . . . . . . . . 89 2.6 PrincipleofHamiltonianDynamics(PHD). . . . . . . . . . . . . . . . . . . 93 2.6.1 Hamiltoniansystemsinclassicalmechanics . . . . . . . . . . . . . . 93 2.6.2 Dynamicsofconservativesystems . . . . . . . . . . . . . . . . . . . 96 2.6.3 PHDforMaxwellelectromagneticfields . . . . . . . . . . . . . . . 100 2.6.4 QuantumHamiltoniansystems . . . . . . . . . . . . . . . . . . . . . 101 3 MathematicalFoundations 107 3.1 BasicConcepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.1.1 Riemannianmanifolds . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.1.2 Physicalfieldsandvectorbundles . . . . . . . . . . . . . . . . . . . 113 3.1.3 Lineartransformationsonvectorbundles . . . . . . . . . . . . . . . 116 3.1.4 Connectionsandcovariantderivatives . . . . . . . . . . . . . . . . . 119 3.2 AnalysisonRiemannianManifolds. . . . . . . . . . . . . . . . . . . . . . . 123 3.2.1 Sobolevspacesoftensorfields . . . . . . . . . . . . . . . . . . . . . 123 3.2.2 Sobolevembeddingtheorem . . . . . . . . . . . . . . . . . . . . . . 126 3.2.3 Differentialoperators . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.2.4 Gaussformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.2.5 PartialDifferentialEquationsonRiemannianmanifolds . . . . . . . 133 3.3 OrthogonalDecompositionforTensorFields . . . . . . . . . . . . . . . . . 135 3.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.3.2 Orthogonaldecompositiontheorems . . . . . . . . . . . . . . . . . . 136 3.3.3 Uniquenessoforthogonaldecompositions . . . . . . . . . . . . . . . 140 3.3.4 Orthogonaldecompositiononmanifoldswithboundary. . . . . . . . 143 3.4 Variationswithdiv -FreeConstraints . . . . . . . . . . . . . . . . . . . . . 144 A 3.4.1 Classicalvariationalprinciple . . . . . . . . . . . . . . . . . . . . . 144 3.4.2 DerivativeoperatorsoftheYang-Millsfunctionals . . . . . . . . . . 146 3.4.3 DerivativeoperatoroftheEinstein-Hilbertfunctional . . . . . . . . . 147 3.4.4 Variationalprinciplewithdiv -freeconstraint . . . . . . . . . . . . . 150 A 3.4.5 Scalarpotentialtheorem . . . . . . . . . . . . . . . . . . . . . . . . 154 3.5 SU(N)RepresentationInvariance. . . . . . . . . . . . . . . . . . . . . . . . 156 3.5.1 SU(N)gaugerepresentation . . . . . . . . . . . . . . . . . . . . . . 156 3.5.2 ManifoldstructureofSU(N) . . . . . . . . . . . . . . . . . . . . . . 157

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.