Mathematical models for sustainable wealth redistribution JC van der Walt Thesis presented in partial fulfilment of the requirements for the degree of Master of (Industrial) Engineering in the Faculty of Engineering at Stellenbosch University Supervisor: Prof JH van Vuuren December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein ismyown,originalwork,thatIamthesoleauthorthereof(savetotheextentexplicitlyotherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 1, 2017 Copyright ' 2017 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za ii Stellenbosch University https://scholar.sun.ac.za Abstract Economic inequality has increased in most large free-market economies during the last century and it has been suggested that this phenomenon is an inherent feature of free-market activities. It seems self-evident, however, that a continual rise in economic inequality is unsustainable. In fact,severeeconomicinequalityhashistoricallybeenassociatedwithnegativeeffectssuchaspoor economicgrowth, severefinancialrecessionsorevenviolentrevolutions. Wealthredistributionis present in every form of government, although the extent thereof varies, and existing theoretical justifications of redistributive actions usually rely heavily on utility theory. Most economic postulates related to inequality are empirically inspired and defended, but be- cause of the vast variety of possible economic contexts in which they may prevail, many of these claims are disputed. One example is the so-called Robin Hood paradox, which asserts that the extent of wealth redistribution is less in more unequal societies, where it is needed most, than in more economically equal societies. Another is the Kuznets curve, which predicts that the extent of inequality in a developing economy will follow an inverted ‘u’ curve as a result of development over time. The implications of increasing relative inequality over time as an inherent feature of wealth growth are investigated in the presence of wealth redistribution. Very simple mathematical model abstractions are employed to shed light on the possible evolution over time of wealth distribution in the context of very basic assumptions, since such behaviour may perhaps then also be inferred in more complicated settings. Assuming increasing per capita wealth growth-rate functions is one way of capturing increasing relative inequality over time, the very simplest case being linearly increasing per capita wealth growth-rate functions, which are considered in this thesis. Two examples of redistribution dy- namicsareinvestigated. Oneexamplemimicsdiffusion-likeeffectsoftrickle-downredistribution, while the other represents a conservative, linear-tax transfer scheme. Itisestablishedanalyticallywithinthecontextoftheaforementionedmathematicalmodelsthat increases in economic inequality can always be limited by means of sufficient redistribution. It is also demonstrated that the Robin Hood paradox may follow from very simple assumptions. It is furthermoreillustratedthatfluctuatingbehaviourintheevolutionovertimeofwealthinequality canevenmanifestitselfintheabsenceoftime-dependentprocesses, andhencethatexplanations of such trends which merely assume time-dependent underlying processes might be of dubious value. Examples of analytical formulations of theoretical justifications for redistributive actions, independent of utility theory, are finally also provided. iii Stellenbosch University https://scholar.sun.ac.za iv Stellenbosch University https://scholar.sun.ac.za Uittreksel Ekonomiese ongelykheid het gedurende die laaste eeu in die meeste groot vryemark ekonomie¨e toegeneem en daar is al voorgestel dat hierdie verskynsel ’n inherente eienskap van vryemark aktiwiteite is. Dit blyk egter voor die hand liggend te wees dat ’n voortdurende toename in ekonomiese ongelykheid onvolhoubaar is. Ernstige ekonomiese ongelykheid het trouens histo- ries hand aan hand gegaan met newe-effekte soos stadige ekonomiese groei, ernstige finansi¨ele resessies en selfs gewelddadige revolusies. Die herverdeling van rykdom is in elke vorm van regering teenwoordig, alhoewel die mate daarvan varieer, en bestaande teoretiese regverdigings vir herverdelingsaksies berus gewoonlik swaar op nutsteorie. Die meeste ekonomiese postulate wat te make het met ongelykheid is empiries-ge¨ınspireer en word ook sodanig verdedig, maar baie van hierdie bewerings word as gevolg van die groot verskeidenheidmoontlikeekonomiesekontekstewaarinhulmagvoorkom, betwis. Eenvoorbeeld hiervan is die sogenaamde Robin Hood-paradoks waarvolgens die mate van rykdom-herverdeling minder is in meer ongelyke gemeenskappe, waar dit juis m´e´er benodig word, as in ekonomies meer gelyke gemeenskappe. Nog ’n voorbeeld is Kuznets se kromme waarvolgens voorspel word dat die mate van ongelykheid in ’n ontwikkelende ekonomie ’n omgekeerde ‘u’ kromme sal volg soos ontwikkeling oor tyd geskied. Die gevolge van toenemende relatiewe ongelykheid oor tyd as ’n inherente kenmerk van toene- menderykdom,indieteenwoordigheidvanrykdom-herverdeling,wordinhierdietesisondersoek. Baie eenvoudige wiskundige modelabstraksies word ingespan om lig te werp op die moontlike evolusie oor tyd van die verdeling van rykdom in die konteks van baie basiese aannames, aange- sien sodanige gedrag dan ook moontlik in meer ingewikkelde kontekste afleibaar is. Die aanname van toenemende per kapita groeitempo-funksies is een manier waarop die toe- name in relatiewe ongelykheid oor tyd vasgevang kan word. Die heel eenvoudigste geval hier- van is lineˆer-toenemende per kapita groeitempo-funksies, wat in hierdie tesis oorweeg word. Twee voorbeelde van herverdelingsdinamika word ondersoek. Een voorbeeld boots die diffusie- verwante gedrag van deursyferingsherverdeling na, terwyl die ander ’n konserwatiewe, lineˆere belasting-oordragskema is. Daarwordbinnediekonteksvandiebogenoemdewiskundigemodelleanalitiesvasgesteldattoe- names in ekonomiese ongelykheid altyd deur genoegsame herverdeling beperk kan word. Daar word ook aangetoon dat die Robin Hood-paradoks die gevolg van baie eenvoudige aannames mag wees. Verder word daar gedemonstreer dat wisselende gedrag in die evolusie van rykdom- ongelykheidoortydselfsindieafwesigheidvantyd-afhanklikeprosessemagvoorkomengevolglik dat verklarings van sulke tendense waarin onderliggende tyd-afhanklike prosesse bloot aange- neem word, van twyfelagtige waarde mag wees. Voorbeelde van analitiese formule-rings vir die teoretiese regverdiging van herverdelingsaksies word laastens ook buite die konteks van nuts- teorie gegee. v Stellenbosch University https://scholar.sun.ac.za vi Stellenbosch University https://scholar.sun.ac.za Acknowledgements The author wishes to acknowledge the following people and institutions for their various contributions towards the completion of this work: (cid:136) Professor van Vuuren for his unwavering support, meticulous feedback and friendship. (cid:136) The National Research Foundation for funding this research. (cid:136) The SUnORE research group for the provision of office space, computing facilities and thoroughly enjoyable social events. vii Stellenbosch University https://scholar.sun.ac.za viii Stellenbosch University https://scholar.sun.ac.za Table of Contents Abstract iii Uittreksel v Acknowledgements vii List of Reserved Symbols xiii List of Figures xv List of Tables xvii 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Scope delimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 I Literature review 7 2 Economic inequality 9 2.1 Inequality and social justice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Trends in economic inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 The redistribution of wealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The notion of optimal redistribution . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Metrics of economic inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Existing models of wealth distribution . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ix
Description: