IJAAMM Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 (ISSN:2347-2529) Journalhomepage:www.ijaamm.com InternationalJournalofAdvancesinAppliedMathematicsandMechanics Mathematical Modelling & Optimization of Crew Module-Service Module Umbilical Separation Mechanism for Manned Mission ResearchArticle ∗ LalaSuryaPrakasha, ,ChandanSaxenab,DilipVb,KrishnanandanVa aHumanSpaceFlightGroup,LiquidPropulsionSystemsCentre,IndianSpaceResearchOrganisation,Valiamala-695547,Kerala,India bControlSystems&UmbilicalDivision,LiquidPropulsionSystemsCentre,IndianSpaceResearchOrganisation,Valiamala-695547,Kerala,India Received24December2019;accepted(inrevisedversion)12February2020 Abstract: Asimplifieddynamicmodelisformulatedfortheactuator-boomconfiguration,proposedfortheseparationofum- bilicalsysteminterconnectingCrewModuleandServiceModule. Optimizationstudiesarecarriedoutusingopen- sourceSciPylibraryonPythonplatform.Theobjectiveofthisstudyistoestimatetheforce,tobedeliveredbyactuator, toseparatetheumbilicalsystemfromCrewModulewithconstraintsimposedfrommissionandlaunchvehicle.This studydoesnotcoverthestructuraloptimizationaspects. However,itprovidespromisinginputsandinsighttopro- ceedwithconfigurationanddesignofthesystem. MSC: 70E17 • 49K21 • 90C90 Keywords: MathematicalModeling • Optimization • Umbilical • CrewModule • ServiceModule © 2020TheAuthor(s).ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(https://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Indian Space Research Organization (ISRO) has initiated manned mission program to achieve in-house human spaceflightcapability[1]. Towardsthis,CrewModule(CM)andServiceModule(SM)areproposedtocarrycrewto orbitandreturnthemsafelybacktoapre-determinedlocation. CMservesasthehabitatofcrewandSMcatersfor lifesupportandpropulsionrequirementsduringascentandon-orbitphasesofthemission. Aumbilicalsystemis proposedtofacilitatefluidandelectricalinterconnectionbetweenCMandSMtillthetimeofCM-SMseparation.The CMislocatedaboveSMandumbilicalsysteminterconnectsCM-SMfromoutsidetheCM-SMstructure(Fig.1). CMhasablativelinerasheatshieldforcombatingheatduringre-entry. AsCMre-entersatmospherefacingbot- tom,theumbilicallinescannotberoutedthroughthebottomwithoutaffectingtheheatshield. Theonlyalternative availableistoroutethelinesoutside(Fig.1).TheproposedumbilicalsystemconsistsofUmbilicalPlatesub-assembly, Boom,andActuator. Umbilicalplatesub-assembly,whichhousesfluid/electricalconnectors,consistsoftwoplates inmatedconditionduringoperation. Oneplateismountedonthefore-endoftheactuatableboomandotherhalf isfixedtoCM.Thefluid/electricallinesareroutedfromSMtoCMthoughtheboomstructure. Theboomisarigid armwithplanarrotationaldegreeoffreedomaboutthefixedmountingpointlocatedatSMfore-end. Theactuator providethenecessaryforceforseparationofumbilicalsystemfromCMpriortoseparationofSMduringabortand descentphase(around120kmaltitude)ofthemission. ∗ Correspondingauthor. E-mailaddress(es): [email protected],[email protected](LalaSuryaPrakash),[email protected](Chandan Saxena),[email protected](DilipV),[email protected](KrishnanandanV). 1 2 MathematicalModelling&OptimizationofCrewModule-Service... Nomenclature CM CrewModule SM ServiceModule CG Centerofgravity b lengthoftheumbilicalplateinplaneofrotation Fa Forcedeliveredbyactuator Fg Gravityforceontotalboom I MomentofInertiaoftotalboomw.r.torigin Ic MomentofInertiaofboompartonCMw.r.torigin Im MomentofInertiaofboompartoutsideCMw.r.torigin Ip MomentofInertiaofumbilicalplatesub-assemblyw.r.torigin X Horizontaldistancebetweenmountingpointsofactuatorandboom Xmax Maximumhorizontalspaceavailabletoaccomodateumbilicalsystem Xsp Horizontaldistancebetweenmountingpointsofactuatorandactuator-boomjoint ∗ X Matrixrepresentingoptimalsolution Y Verticaldistancebetweenmountingpointsofactuatorandboom Ygap Verticalgapbetweenactuator-boomjointandSMtop Ymax Maximumverticalspaceavailabletoaccomodateumbilicalsystem Ysp Verticaldistancebetweenmountingpointsofactuatorandactuator-boomjoint f Functionrepresentingobjectivefunction gi Inequalityconstraints m Totalmassoftheboomincludingfluid/electricallines mc MassoftheboompartwhichliesonCM mp Massoftheumbilicalplatesub-assembly mm Massoftheboompartwhichliesoutsidetheboomandactsasmomentarmforactuator (cid:126)rcg CGofthetotalboom t Time tsep TimerequiredforfullseparationofumbilicalsystemfromCM xcg AbscissaofCGofthetotalboom xc,cg AbscissaofCGoftheboompartwhichliesonCM xm,cg AbscissaofCGoftheboompartwhichliesoutsideofCM xp,cg AbscissaofCGoftheumbilicalplate ycg OrdinateofCGofthetotalboom yc,cg OrdinateofCGoftheboompartwhichliesonCM ym,cg OrdinateofCGoftheboompartwhichliesoutsideofCM yp,cg OrdinateofCGoftheumbilicalplate la Lengthoftheactuatorinnon-actuatedcondition lc LengthoftheboompartonCM lm LengthoftheboompartoutsideCM lp DistanceofCGofumbilicalplatefromtopendoftheboom(lp=0.5bforpresentstudy) α Angularaccelerationofboomw.r.torigin β Anglemadebyactuatorw.r.tx-axisinnon-actuatedposition θ AnglemadebyboompartoutsideCMw.r.tx-axis θc AnglemadebyboompartonCMw.r.tx-axis θ FinalanglemadebyboompartonCMw.r.tx-axisafterseparation cf θ FinalanglemadebyboompartoutsideCMw.r.tx-axisafterseparation f ω Angularvelocityofboomw.r.torigin τ Nettorqueappliedonboomw.r.torigin NationalAeronauticsandSpaceAdministration(NASA),USAhasdevelopedactuatorbasedumbilicalseparation mechanismforApolloandOrionprograms. Apollo’sCSM[2]andOrionspacecraft[3]routedtheirumbilicallines outsidefromServiceModuletoCommandModule. Thelaunchvehicleenvelopeandmissionconstraintsaremajorfactorsdecidingthedesignoftheumbilicalsys- tem. Thispaperpresentsthedetailsofmathematicalmodellingandoptimizationstudycarriedoutfortheproposed actuator-boomconfiguration. 2. DevelopmentofMathematicalModel Theactuator-boomconfigurationissimilartooneemployedinhydraulicexcavators. Ref. [4]and[5]arereferred forthedevelopmentofthemathematicalmodelofactuator-boom.Inthepresentstudy,theboomismodelledasbent LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 3 Fig.1.OverallconfigurationofCM-SMUmbilical (a)Simplifiedsystem (b)Parameterdetails Fig.2.Kinematicdetailsofboom-actuatorsystem beamstructureforgeneralization. The boom is assumed as a rigid structure with non-uniform load distribution due to the umbilical plate and fluid/electrical lines. In order to parametrize this non-uniform load, the loads are assumed to be concentrated at threelocationsonthebeam(Fig.2(a))umbilicalplatesub-assembly(b)partoftheboomwhichliesonCM(c)partof theboomoutsidetheCMwhichactsasmomentarmforactuator. Inordertomaximizethemomentarm,thepoint ofactionoftheactuatorisproposedtocoincidewiththepointofbend. Totalmassoftheboom-actuatorsystemis expressedas- m=m +m +m (1) p c m 4 MathematicalModelling&OptimizationofCrewModule-Service... 2.1. Centerofgravityoftheboom Thecenterofgravity(CG)oftotalboomstructure, includingboom, electrical/fluidlinesandumbilicalplate, is specifiedinvectorformw.r.tXYcartesianco-ordinatesystemwithorigin(0,0)atpoint’O’(Fig.2(b)). (cid:126)r =x iˆ+y jˆ (2) cg cg cg where, x m +x m +x m x = m,cg m c,cg c p,cg p cg m +m +m m c p = 1 (cid:163)0.5m l cosθ+m (l cosθ+0.5l cosθ )+m (cid:161)l cosθ+(cid:161)l −l (cid:162)cosθ (cid:162)(cid:164) m m c m c c p m c p c m y m +y m +y m y = m,cg m c,cg c p,cg p cg m +m +m m c p = 1 (cid:163)0.5m l sinθ+m (l sinθ+0.5l sinθ )+m (cid:161)l sinθ+(cid:161)l −l (cid:162)sinθ (cid:162)(cid:164) m m c m c c p m c p c m 2.2. MomentofInertiaoftheBoom Momentofinertia(MI)ofthetotalboomaboutoriginpoint’O’isexpressedas I=I +I +I (3) m c b where, m l2 I = m m m 3 (cid:183) l2 (cid:184) I =m l2 + c +l l cos(θ −θ) c c m 3 m c c I =mpb2+m (cid:104)l2 +(cid:161)l −l (cid:162)2+2l (cid:161)l −l (cid:162)cos(θ −θ)(cid:105) p 12 p m c p m c p c 2.3. Kinematics In order to meet the separation requirements, the boom need to rotate to a final position of θ in a time t cf sep imposed by mission. As the expressions for MI and CG are in terms of θ, θ is converted to θ using geometric cf f relationship(4). θ =θ +(θ −θ) =⇒ θ −θ =θ −θ (4) cf f c cf c f Assumingconstantangularacceleration,thefollowingholdstrue. 1 θ =θ+ω t + αt2 f o sep 2 sep Astheboomisinitiallyatrest, 2(θ −θ) α= f t2 sep UsingEquation(4),theaboveequationcanbetransformedto 2(θ −θ ) α= cf c (5) t2 sep LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 5 Fig.3.FreebodydiagramoftheboomatLaunchpadcondition 2.4. Rigidbodydynamics Theequationofmotionfortheboomisdevelopedbasedontorquebalanceaboutpivotpointoftheboom,origin ’O’ofXYco-ordinatesystem(Fig.3),forlaunchpadabortcondition.Theadditionalinertialforces,duetoacceleration ofthevehicle,alsoplaysaroleinthedynamicsofboomandshallbeincorporatedinparameter’g’.Asthereisnoloss ingenerality,thepresentstudydoesnotaccountforsuchinertialforce. ConsideringrotationalanalogueofNewton’s secondlawofmotion[6],thetorque(τ)actingontheboomisexpressedaboutorigin’O’. (cid:88)τ=Iα Fasin(cid:161)θ+β(cid:162)lm−Fgxcg =Iα (6) F sin(cid:161)θ+β(cid:162)l −mgx =Iα a m cg Re-arrangingEquation(6),theforcerequiredfromactuatorisexpressedas Iα+mgx F = cg (7) a l sin(cid:161)θ+β(cid:162) m 3. ProblemFormulation Theobjectiveofthepresentstudyistominimizetheforcerequiredtorotatetheboomstructureforeffectivesepa- rationofCMandSM.Theoptimizationproblemisformalizedasfollowing Iα+mgx Minimize: F = cg =f (cid:161)l ,θ,β(cid:162) (8) a l sin(cid:161)θ+β(cid:162) m m where,I,mandx areasperEq.(1),Eq.(2)andEq.(3)respectively. cg Subjectto:g =X −X −l cosθ≥0 1 max sp m g =X tanβ−Y ≥0 2 sp gap g3=Ymax−lcsinθc−lasinβ≥0 (9) θ =106o cf t ≤0.150 sep Theconstraints,g , g ,and g ,aregeometricinnatureandderivedfromthespacelimitationofthelaunchvehicle. 1 2 3 In contrast, θ and t are functional constraints from mission point of view and these need to be satisfied for cf sep ensuringcleanseparationofcrewmodulefromservicemodule. Theoptimizationproblem, definedbyEquations (8)and(9),belongstoparameterorstaticoptimisationcase.Thevariablesinvolvedintheoptimizationproblemcan becategorisedin"decisionvariables","preassignedparameters"and"derivedparameters". DecisionVariables:l ,θ,β m PreassignedParameters:m ,m ,m ,l , X ,Y ,θ ,α m c p c sp gap c DerivedParameters:α,l , X,Y,Y a sp Using(5)andmissionconstraintsfrom(9), 2×(106−76)×π α= =23rad/s2 (10) 0.152×180 6 MathematicalModelling&OptimizationofCrewModule-Service... Fig.4.GeometricConstraintsduetoLaunchVehicle Table1.Inputparametersforoptimizationstudy m 50kg mm 0.1m=5kg mc 0.2m=10kg mp 0.7m=35kg lc 650mm Xsp 175mm Ygap 450mm θc 76◦ Xmax 330mm Ymax 1090mm Considering uncertainity in the input variables and to be more conservative, the above value is rounded off to 30rad/s2. TheremainingparametersinthisgroupdependsonthedecisionvariablesandarecomputedinSection5. X l = sp a cosβ X =Xsp+lmcosθ (11) Y =l sinβ−l sinθ a m Y =X tanβ sp sp 4. OptimizationStudy Theoptimizationiscarriedoutforbothunconstrainedandconstrainedcase. Thecomputationsarecarriedout inSciPyVer. 1.1.0scientificcomputingpackage[7]ofPythonVer. 3.7.1platform. Pythonisanopen-sourcegeneral- purposeprogramminglanguagewithsupportforscientificcomputationanddatavisualizationtools.Theminimiza- tionoftheobjectivefunction,forthepresentstudy,iscarriedoutusingscipy.optimizewhichprovidesfollowingsub- routinesformultivariablenonlinearoptimizationofscalarobjectivefunctions. 1. scipy.optimize.minimize:Thisfunctionsprovidesvariousstandardalgorithmslike‘Nelder-Mead’,’Powell’,’CG’ methods,’COBYLA’etc.forbothunconstrainedandunconstrainedcases. 2. GlobalOptimization:scipy.optimizecontainsalgorithmslikeBasin-Hopping,DifferentialEvolution,SHG,Dual Annealingandbruteforceforfindingglobalminimumofmultivariatefunction. LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 7 (a)Lossofprecision (b)Convergedwith∇f (cid:54)=0 Fig.5.Resultsofunconstrainedoptimization Fig.6.Performanceofoptimizationalgorithmwith2decisionvariables Case1:UnconstrainedOptimization NecessaryandSufficientconditionsforlocalminimum[8]: ∇f(X∗)=0 (12) ∇2f(X∗)(cid:194)0 The unconstrained case is solved numerically using both direct search and descent methods implemented in scipy.optimize.minimize module. Itis found that the above problem is ill-posed and no solution found withthree independentdecisionvariables,l ,θ, andβ. Mostofthealgorithmsdidnotconvergetosolutioncitinglossofpre- m cisionandsampleresultsareshowninFig.5. AsevidentfromFig.5(a),thevalueofobjectivefunctionfallsrapidly andgoestonegativesidebeforestoppingduetolossofprecision.InFig.5(b),thefunctionvaluedwellsatzerobefore fallingto−6.5×1016. Basedontheaboveresults,theminimizationapproachismodifiedbyreducingthenumberofdecisionvariableto 2Nos.,l , and θ. βisexcludedasitappearsonlyinoneplaceintheexpressionofobjectivefunction(Eq. (7))and m doesnoteffectphysicalparametrslikeCGandMI.Moreover,βcanbeseparatelycontrolledindependentofboom structure. Withβasinputparameter,thealgorithmsconvergesandresultsareshowninFig.6. Theresultsclearly showsthat’Nelder-Mead’algorithmwhichisadirectsearchmethodtakesmorenumberofiterationcomparedto gradientbasedmethodslike’BGFS’toarriveatoptimumvalue. Boththealgortihmsareinitiatedwithsameintial condition,l =0.7mandθ=20◦.TheTable2showstheoptimumvaluesofdecisionvariables,l andθ,forminimum m m actuatorforce,F ,correspondingtovariousβ. ItisconcludedthatthereisnolocalminimumofF withrespectto a a β. Thenegativevaluesofθarediscardedastheyrepresentun-realisticscenariosforourcase. Hence,theminimum possiblevalueforF liesbetweenβ=60oandβ=70o.Theθinthisrangeofβisnearlyequaltozeroi.e.thebentarm a 8 MathematicalModelling&OptimizationofCrewModule-Service... Table2.MinimumFaforrangeofβ β lm θ Fa (deg.) (mm) (deg.) (kN) 10 509.07 102.90 2.64 20 509.07 82.82 2.79 30 509.07 62.74 2.86 40 509.07 42.67 2.84 50 509.07 22.59 2.73 60 509.07 2.50 2.54 70 509.07 -17.59 2.27 80 509.07 -37.74 1.93 90 509.07 -57.94 1.53 Table3.ResultsofGlobalOptimization Paramters Bounds OptimumValue lm 100to900mm 509.07mm θ 0to90◦ 0◦ β 0to90◦ 90◦ Fa NotApplicable 2.20kN isalmosthorizontal.Clearly,theoutcomeoftheunconstrainedoptimizationdoesnotmeetthehorizontalconstraint ofX (constraintg ). max 1 Theabovebehaviourisfurtherconfirmedby’DifferentialEvolution’alogrithmforglobaloptimization. Thebounds fordecisionvariableswerechosenjudiciouslytoallowforpracticalsolutions.Thealgorithmconvergeswithnon-zero jacobian,suggestingnon-existenceofanyrelativeminimuminthedesignspace.Theoutcome(Table3)isinlinewith theunconstrainedoptimizationresult,ifthenegativevaluesofθareneglectedforthelatercase. Case2:ConstrainedOptimization As mentioned in Section 3, constraints are of inequality type and Kuhn-Tucker conditions need to be satisfied [8]forobtainingminimumofF (Eq. (8)). Itisobservedfromtheunconstrainedoptimizationstudy(Case1)that a theproblemisill-posedwithnorelativeminimum. The’SLSQP’methodisemployedwiththreedecisionvariables viz. l , θ, β, considering the flexibility of imposing bounds via scipy.optimize.minimize function. The inequality m constraintsareappliedasperEq.(9). Bounds:l =[0mm,600mm], θ=[0◦,150◦], β=[40◦,90◦] m Initializationvector:l =100mm, θ=30◦, β=70◦ m The’SLSQP’algorithmtook16iterations,referFig.7,toconvergeatthesolutiongiveninTable4. TheabovesolutionisverifiedexpliciltyforcomplianceofconstraintsandtheresultsareshowninTable5. Fig.7.ConvergenceofSLSQPalgorithm LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 9 Table4.Optimumsolutionwithconstraints Parameter OptimumValue lm 156.5mm θ 7.95◦ β 69.14◦ Fa 3.56kN Table5.Constraintscorrespondingtooptimalsolution Constraints ValueatX* g1 1.56×10−8mm g2 9.31mm g3 2.56×10−10mm 5. ResultsandDiscussions Asshownbytheunconstrainedandglobaloptimizationstudyinprevioussection, theoptimizationproblemof boom-actuatorsystem,withthreedecisionvariables,isanill-posedone.Theoutcomeoftheglobaloptimization,θ= 0◦andβ=90◦,isanintiuitiveone.Observingtheobjectivefunction(Eq.(8)),itisindicative(notobviousandneces- sary)thatactuatorforceminimizesasθ+β=90◦. However,solvingtheproblemunderconstraintsresultedinviable solutionwhichcanbeimplementedforhumanspaceflightprogram. 1. Basedontheresultsobtainedfromconstrainedoptimizationstudy,thederivedparametersarecomputedusing Eq. (4)and(11). Table4andTable6providesallparameters(Fig.2(b))todefinetheactuator-boomconfigura- tionasmodeledforthepresentstudy. 2. A single bracket structure is proposed to mount the actuator and boom. The bracket is rigidly fixed to ser- vicemodulestructure. X =329.9mm andY =437.6mm representstheoverallenvelopeofthebrackettobe designed. Itisobservedthatthehorizontalspanofthebracketisequaltomaximumspaceconstraintinthe horizontaldirection. So,itisprudenttokeepsomemarginwithactualvehicleenvelopepriortooptimization study. 3. CutoutinSMneedtobeconfiguredtoroutethefluid/electricallinesthroughbrackettotheboomandfinally toCM.Flexiblehosesarethefirstchoiceforfluidlinesconsideringthemovementrequiredduringseparation. However, caution shall be taken to bend the hoses properly in a smooth manner around the bracket-boom structure. Analternativeistousecombinationofflexiblehosesandrigidtubes. Flexiblehosesshallbeused fromSMtoboombottom,facilitatingthemovementduringseparation.Rigidtubesovertheboomispreferable asthereisnorelativemovementrequiredinthispartduringseparation. 4. Theminimumforcetobedeliveredbyactuatorisfoundtobe3.56kN (Table4).Thegeometriclength,l may a notbeconsideredasintiallength(non-actuatedcondtion)oftheactuator. Theactuatorcanbesmallerthan theoptimumvalueof491.5mm.Thismeansthattheactuatortobemountedonpassivestructuretosatisfythe geometricconstraintof491.5mm. 5. Theminimumforceobtainedfromconstrainedoptimizationisapplicableonlyfortheinitialconditionwhen theumbilicalsystemismatedwithCM.Thevariationofforcerequirementduetomovementofumbilicalsystem Table6.DerivedParameterscorrespondingtoOptimumsolution Parameter OptimumValue la 491.5mm X 329.9mm Y 437.6mm Ysp 459.3mm θ 37.95◦ f 10 MathematicalModelling&OptimizationofCrewModule-Service... Fig.8.ForcerequiredfromActuatorduringseparation isnecessarytodesigntheactuator. Expressionof X andY (Eq. (9))canbemanipulatedtoleadtofollowing geometricrelation. Y +l sinθ tanβ= m (13) X−l cosθ m UsingEq.(7)and(13),theforcerequiredbyactautorisplottedforθ=7.95◦to37.95◦(Fig.8). 6. Conclusion Asimplifieddynamicmodel, oftheproposedactuator-boomconfiguration, isformulatedbasedonrelevantas- sumptions.Theactuator-boomconfigurationisoptimizedconsideringconstraintsfrommissionandlaunchvehicle. Asthereisnogeneralruletoselectthebestalgorithm,itisrecommendedtoexplorethebehaviourofobjectivefunc- tionusingvariousavailablealgorithm. Inthiscase, theobjectivefunctionisexploredusingunconstrained, global andconstrainedoptimizationtechinques.Itisalsoshownthatevenincaseofill-posedenigneeringproblem,feasible solutionsarepossiblewithinthespecifiedgeometricandfunctionalconstraints.Theimplementationoftheobtained resultstoactualhardwareisalsodiscussedinbrief.Itisnotedthatthepresentstudydoesnottakeintoaccountiner- tialforcesduetolaunchvehiclemotion. Thisstudycanbefurthermodifiedtoincludestructuredynamicaspectsof boom. References [1] DepartmentofSpace,GovernmentofIndia,AnnualReport2018-2019, https://www.isro.gov.in/sites/default/files/annualreport2018-19.pdf,2019. [2] NASA,CSMOverview,https://www.hq.nasa.gov/alsj/CSMNewsRef-Boothman.html. [3] DamonDelap,JoelGliddenandChristopherLamoreaux,DevelopmentoftheOrionCrew-ServiceModuleMod- uleUmbilicalRetentionandReleaseMechanism, JohnWiley, 15thEuropeanSpaceMechanismsandTribology Symposium,Vol.718(2013). [4] JiaqiXu,andHwan-SikYoon,Areviewonmechanicalandhydraulicsystemmodelingofexcavatormanipulator system,JournalofConstructionEngineering2016(2016). [5] LeszekCedro,LinearizationandidentificationaMathematicalmodelofanexcavator,Proceedingsofthe201415th InternationalCarpathianControlConference(ICCC),IEEE(2014)73-79. [6] D.Halliday,R.ResnickandJ.Walker,FundamentalsofPhysics,JohnWiley&Sons,2010 [7] PauliVirtanen,RalfGommers,et.al.,andSciPy1.0Contributors.Scipy1.0–fundamentalalgorithmsforscientific computinginpython.arXive-prints,pagearXiv:1907.10121,Jul2019. [8] S.S.Rao,EngineeringOptimization:TheoryandPractice,NewAgeInternational,2006