ebook img

Mathematical Modelling & Optimization Of Crew Module Service Module Umbilical Separation Mechanism For Manned Mission PDF

2020·0.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Modelling & Optimization Of Crew Module Service Module Umbilical Separation Mechanism For Manned Mission

IJAAMM Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 (ISSN:2347-2529) Journalhomepage:www.ijaamm.com InternationalJournalofAdvancesinAppliedMathematicsandMechanics Mathematical Modelling & Optimization of Crew Module-Service Module Umbilical Separation Mechanism for Manned Mission ResearchArticle ∗ LalaSuryaPrakasha, ,ChandanSaxenab,DilipVb,KrishnanandanVa aHumanSpaceFlightGroup,LiquidPropulsionSystemsCentre,IndianSpaceResearchOrganisation,Valiamala-695547,Kerala,India bControlSystems&UmbilicalDivision,LiquidPropulsionSystemsCentre,IndianSpaceResearchOrganisation,Valiamala-695547,Kerala,India Received24December2019;accepted(inrevisedversion)12February2020 Abstract: Asimplifieddynamicmodelisformulatedfortheactuator-boomconfiguration,proposedfortheseparationofum- bilicalsysteminterconnectingCrewModuleandServiceModule. Optimizationstudiesarecarriedoutusingopen- sourceSciPylibraryonPythonplatform.Theobjectiveofthisstudyistoestimatetheforce,tobedeliveredbyactuator, toseparatetheumbilicalsystemfromCrewModulewithconstraintsimposedfrommissionandlaunchvehicle.This studydoesnotcoverthestructuraloptimizationaspects. However,itprovidespromisinginputsandinsighttopro- ceedwithconfigurationanddesignofthesystem. MSC: 70E17 • 49K21 • 90C90 Keywords: MathematicalModeling • Optimization • Umbilical • CrewModule • ServiceModule © 2020TheAuthor(s).ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(https://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction Indian Space Research Organization (ISRO) has initiated manned mission program to achieve in-house human spaceflightcapability[1]. Towardsthis,CrewModule(CM)andServiceModule(SM)areproposedtocarrycrewto orbitandreturnthemsafelybacktoapre-determinedlocation. CMservesasthehabitatofcrewandSMcatersfor lifesupportandpropulsionrequirementsduringascentandon-orbitphasesofthemission. Aumbilicalsystemis proposedtofacilitatefluidandelectricalinterconnectionbetweenCMandSMtillthetimeofCM-SMseparation.The CMislocatedaboveSMandumbilicalsysteminterconnectsCM-SMfromoutsidetheCM-SMstructure(Fig.1). CMhasablativelinerasheatshieldforcombatingheatduringre-entry. AsCMre-entersatmospherefacingbot- tom,theumbilicallinescannotberoutedthroughthebottomwithoutaffectingtheheatshield. Theonlyalternative availableistoroutethelinesoutside(Fig.1).TheproposedumbilicalsystemconsistsofUmbilicalPlatesub-assembly, Boom,andActuator. Umbilicalplatesub-assembly,whichhousesfluid/electricalconnectors,consistsoftwoplates inmatedconditionduringoperation. Oneplateismountedonthefore-endoftheactuatableboomandotherhalf isfixedtoCM.Thefluid/electricallinesareroutedfromSMtoCMthoughtheboomstructure. Theboomisarigid armwithplanarrotationaldegreeoffreedomaboutthefixedmountingpointlocatedatSMfore-end. Theactuator providethenecessaryforceforseparationofumbilicalsystemfromCMpriortoseparationofSMduringabortand descentphase(around120kmaltitude)ofthemission. ∗ Correspondingauthor. E-mailaddress(es): [email protected],[email protected](LalaSuryaPrakash),[email protected](Chandan Saxena),[email protected](DilipV),[email protected](KrishnanandanV). 1 2 MathematicalModelling&OptimizationofCrewModule-Service... Nomenclature CM CrewModule SM ServiceModule CG Centerofgravity b lengthoftheumbilicalplateinplaneofrotation Fa Forcedeliveredbyactuator Fg Gravityforceontotalboom I MomentofInertiaoftotalboomw.r.torigin Ic MomentofInertiaofboompartonCMw.r.torigin Im MomentofInertiaofboompartoutsideCMw.r.torigin Ip MomentofInertiaofumbilicalplatesub-assemblyw.r.torigin X Horizontaldistancebetweenmountingpointsofactuatorandboom Xmax Maximumhorizontalspaceavailabletoaccomodateumbilicalsystem Xsp Horizontaldistancebetweenmountingpointsofactuatorandactuator-boomjoint ∗ X Matrixrepresentingoptimalsolution Y Verticaldistancebetweenmountingpointsofactuatorandboom Ygap Verticalgapbetweenactuator-boomjointandSMtop Ymax Maximumverticalspaceavailabletoaccomodateumbilicalsystem Ysp Verticaldistancebetweenmountingpointsofactuatorandactuator-boomjoint f Functionrepresentingobjectivefunction gi Inequalityconstraints m Totalmassoftheboomincludingfluid/electricallines mc MassoftheboompartwhichliesonCM mp Massoftheumbilicalplatesub-assembly mm Massoftheboompartwhichliesoutsidetheboomandactsasmomentarmforactuator (cid:126)rcg CGofthetotalboom t Time tsep TimerequiredforfullseparationofumbilicalsystemfromCM xcg AbscissaofCGofthetotalboom xc,cg AbscissaofCGoftheboompartwhichliesonCM xm,cg AbscissaofCGoftheboompartwhichliesoutsideofCM xp,cg AbscissaofCGoftheumbilicalplate ycg OrdinateofCGofthetotalboom yc,cg OrdinateofCGoftheboompartwhichliesonCM ym,cg OrdinateofCGoftheboompartwhichliesoutsideofCM yp,cg OrdinateofCGoftheumbilicalplate la Lengthoftheactuatorinnon-actuatedcondition lc LengthoftheboompartonCM lm LengthoftheboompartoutsideCM lp DistanceofCGofumbilicalplatefromtopendoftheboom(lp=0.5bforpresentstudy) α Angularaccelerationofboomw.r.torigin β Anglemadebyactuatorw.r.tx-axisinnon-actuatedposition θ AnglemadebyboompartoutsideCMw.r.tx-axis θc AnglemadebyboompartonCMw.r.tx-axis θ FinalanglemadebyboompartonCMw.r.tx-axisafterseparation cf θ FinalanglemadebyboompartoutsideCMw.r.tx-axisafterseparation f ω Angularvelocityofboomw.r.torigin τ Nettorqueappliedonboomw.r.torigin NationalAeronauticsandSpaceAdministration(NASA),USAhasdevelopedactuatorbasedumbilicalseparation mechanismforApolloandOrionprograms. Apollo’sCSM[2]andOrionspacecraft[3]routedtheirumbilicallines outsidefromServiceModuletoCommandModule. Thelaunchvehicleenvelopeandmissionconstraintsaremajorfactorsdecidingthedesignoftheumbilicalsys- tem. Thispaperpresentsthedetailsofmathematicalmodellingandoptimizationstudycarriedoutfortheproposed actuator-boomconfiguration. 2. DevelopmentofMathematicalModel Theactuator-boomconfigurationissimilartooneemployedinhydraulicexcavators. Ref. [4]and[5]arereferred forthedevelopmentofthemathematicalmodelofactuator-boom.Inthepresentstudy,theboomismodelledasbent LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 3 Fig.1.OverallconfigurationofCM-SMUmbilical (a)Simplifiedsystem (b)Parameterdetails Fig.2.Kinematicdetailsofboom-actuatorsystem beamstructureforgeneralization. The boom is assumed as a rigid structure with non-uniform load distribution due to the umbilical plate and fluid/electrical lines. In order to parametrize this non-uniform load, the loads are assumed to be concentrated at threelocationsonthebeam(Fig.2(a))umbilicalplatesub-assembly(b)partoftheboomwhichliesonCM(c)partof theboomoutsidetheCMwhichactsasmomentarmforactuator. Inordertomaximizethemomentarm,thepoint ofactionoftheactuatorisproposedtocoincidewiththepointofbend. Totalmassoftheboom-actuatorsystemis expressedas- m=m +m +m (1) p c m 4 MathematicalModelling&OptimizationofCrewModule-Service... 2.1. Centerofgravityoftheboom Thecenterofgravity(CG)oftotalboomstructure, includingboom, electrical/fluidlinesandumbilicalplate, is specifiedinvectorformw.r.tXYcartesianco-ordinatesystemwithorigin(0,0)atpoint’O’(Fig.2(b)). (cid:126)r =x iˆ+y jˆ (2) cg cg cg where, x m +x m +x m x = m,cg m c,cg c p,cg p cg m +m +m m c p = 1 (cid:163)0.5m l cosθ+m (l cosθ+0.5l cosθ )+m (cid:161)l cosθ+(cid:161)l −l (cid:162)cosθ (cid:162)(cid:164) m m c m c c p m c p c m y m +y m +y m y = m,cg m c,cg c p,cg p cg m +m +m m c p = 1 (cid:163)0.5m l sinθ+m (l sinθ+0.5l sinθ )+m (cid:161)l sinθ+(cid:161)l −l (cid:162)sinθ (cid:162)(cid:164) m m c m c c p m c p c m 2.2. MomentofInertiaoftheBoom Momentofinertia(MI)ofthetotalboomaboutoriginpoint’O’isexpressedas I=I +I +I (3) m c b where, m l2 I = m m m 3 (cid:183) l2 (cid:184) I =m l2 + c +l l cos(θ −θ) c c m 3 m c c I =mpb2+m (cid:104)l2 +(cid:161)l −l (cid:162)2+2l (cid:161)l −l (cid:162)cos(θ −θ)(cid:105) p 12 p m c p m c p c 2.3. Kinematics In order to meet the separation requirements, the boom need to rotate to a final position of θ in a time t cf sep imposed by mission. As the expressions for MI and CG are in terms of θ, θ is converted to θ using geometric cf f relationship(4). θ =θ +(θ −θ) =⇒ θ −θ =θ −θ (4) cf f c cf c f Assumingconstantangularacceleration,thefollowingholdstrue. 1 θ =θ+ω t + αt2 f o sep 2 sep Astheboomisinitiallyatrest, 2(θ −θ) α= f t2 sep UsingEquation(4),theaboveequationcanbetransformedto 2(θ −θ ) α= cf c (5) t2 sep LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 5 Fig.3.FreebodydiagramoftheboomatLaunchpadcondition 2.4. Rigidbodydynamics Theequationofmotionfortheboomisdevelopedbasedontorquebalanceaboutpivotpointoftheboom,origin ’O’ofXYco-ordinatesystem(Fig.3),forlaunchpadabortcondition.Theadditionalinertialforces,duetoacceleration ofthevehicle,alsoplaysaroleinthedynamicsofboomandshallbeincorporatedinparameter’g’.Asthereisnoloss ingenerality,thepresentstudydoesnotaccountforsuchinertialforce. ConsideringrotationalanalogueofNewton’s secondlawofmotion[6],thetorque(τ)actingontheboomisexpressedaboutorigin’O’. (cid:88)τ=Iα Fasin(cid:161)θ+β(cid:162)lm−Fgxcg =Iα (6) F sin(cid:161)θ+β(cid:162)l −mgx =Iα a m cg Re-arrangingEquation(6),theforcerequiredfromactuatorisexpressedas Iα+mgx F = cg (7) a l sin(cid:161)θ+β(cid:162) m 3. ProblemFormulation Theobjectiveofthepresentstudyistominimizetheforcerequiredtorotatetheboomstructureforeffectivesepa- rationofCMandSM.Theoptimizationproblemisformalizedasfollowing Iα+mgx Minimize: F = cg =f (cid:161)l ,θ,β(cid:162) (8) a l sin(cid:161)θ+β(cid:162) m m where,I,mandx areasperEq.(1),Eq.(2)andEq.(3)respectively. cg Subjectto:g =X −X −l cosθ≥0 1 max sp m g =X tanβ−Y ≥0 2 sp gap g3=Ymax−lcsinθc−lasinβ≥0 (9) θ =106o cf t ≤0.150 sep Theconstraints,g , g ,and g ,aregeometricinnatureandderivedfromthespacelimitationofthelaunchvehicle. 1 2 3 In contrast, θ and t are functional constraints from mission point of view and these need to be satisfied for cf sep ensuringcleanseparationofcrewmodulefromservicemodule. Theoptimizationproblem, definedbyEquations (8)and(9),belongstoparameterorstaticoptimisationcase.Thevariablesinvolvedintheoptimizationproblemcan becategorisedin"decisionvariables","preassignedparameters"and"derivedparameters". DecisionVariables:l ,θ,β m PreassignedParameters:m ,m ,m ,l , X ,Y ,θ ,α m c p c sp gap c DerivedParameters:α,l , X,Y,Y a sp Using(5)andmissionconstraintsfrom(9), 2×(106−76)×π α= =23rad/s2 (10) 0.152×180 6 MathematicalModelling&OptimizationofCrewModule-Service... Fig.4.GeometricConstraintsduetoLaunchVehicle Table1.Inputparametersforoptimizationstudy m 50kg mm 0.1m=5kg mc 0.2m=10kg mp 0.7m=35kg lc 650mm Xsp 175mm Ygap 450mm θc 76◦ Xmax 330mm Ymax 1090mm Considering uncertainity in the input variables and to be more conservative, the above value is rounded off to 30rad/s2. TheremainingparametersinthisgroupdependsonthedecisionvariablesandarecomputedinSection5. X l = sp a cosβ X =Xsp+lmcosθ (11) Y =l sinβ−l sinθ a m Y =X tanβ sp sp 4. OptimizationStudy Theoptimizationiscarriedoutforbothunconstrainedandconstrainedcase. Thecomputationsarecarriedout inSciPyVer. 1.1.0scientificcomputingpackage[7]ofPythonVer. 3.7.1platform. Pythonisanopen-sourcegeneral- purposeprogramminglanguagewithsupportforscientificcomputationanddatavisualizationtools.Theminimiza- tionoftheobjectivefunction,forthepresentstudy,iscarriedoutusingscipy.optimizewhichprovidesfollowingsub- routinesformultivariablenonlinearoptimizationofscalarobjectivefunctions. 1. scipy.optimize.minimize:Thisfunctionsprovidesvariousstandardalgorithmslike‘Nelder-Mead’,’Powell’,’CG’ methods,’COBYLA’etc.forbothunconstrainedandunconstrainedcases. 2. GlobalOptimization:scipy.optimizecontainsalgorithmslikeBasin-Hopping,DifferentialEvolution,SHG,Dual Annealingandbruteforceforfindingglobalminimumofmultivariatefunction. LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 7 (a)Lossofprecision (b)Convergedwith∇f (cid:54)=0 Fig.5.Resultsofunconstrainedoptimization Fig.6.Performanceofoptimizationalgorithmwith2decisionvariables Case1:UnconstrainedOptimization NecessaryandSufficientconditionsforlocalminimum[8]: ∇f(X∗)=0 (12) ∇2f(X∗)(cid:194)0 The unconstrained case is solved numerically using both direct search and descent methods implemented in scipy.optimize.minimize module. Itis found that the above problem is ill-posed and no solution found withthree independentdecisionvariables,l ,θ, andβ. Mostofthealgorithmsdidnotconvergetosolutioncitinglossofpre- m cisionandsampleresultsareshowninFig.5. AsevidentfromFig.5(a),thevalueofobjectivefunctionfallsrapidly andgoestonegativesidebeforestoppingduetolossofprecision.InFig.5(b),thefunctionvaluedwellsatzerobefore fallingto−6.5×1016. Basedontheaboveresults,theminimizationapproachismodifiedbyreducingthenumberofdecisionvariableto 2Nos.,l , and θ. βisexcludedasitappearsonlyinoneplaceintheexpressionofobjectivefunction(Eq. (7))and m doesnoteffectphysicalparametrslikeCGandMI.Moreover,βcanbeseparatelycontrolledindependentofboom structure. Withβasinputparameter,thealgorithmsconvergesandresultsareshowninFig.6. Theresultsclearly showsthat’Nelder-Mead’algorithmwhichisadirectsearchmethodtakesmorenumberofiterationcomparedto gradientbasedmethodslike’BGFS’toarriveatoptimumvalue. Boththealgortihmsareinitiatedwithsameintial condition,l =0.7mandθ=20◦.TheTable2showstheoptimumvaluesofdecisionvariables,l andθ,forminimum m m actuatorforce,F ,correspondingtovariousβ. ItisconcludedthatthereisnolocalminimumofF withrespectto a a β. Thenegativevaluesofθarediscardedastheyrepresentun-realisticscenariosforourcase. Hence,theminimum possiblevalueforF liesbetweenβ=60oandβ=70o.Theθinthisrangeofβisnearlyequaltozeroi.e.thebentarm a 8 MathematicalModelling&OptimizationofCrewModule-Service... Table2.MinimumFaforrangeofβ β lm θ Fa (deg.) (mm) (deg.) (kN) 10 509.07 102.90 2.64 20 509.07 82.82 2.79 30 509.07 62.74 2.86 40 509.07 42.67 2.84 50 509.07 22.59 2.73 60 509.07 2.50 2.54 70 509.07 -17.59 2.27 80 509.07 -37.74 1.93 90 509.07 -57.94 1.53 Table3.ResultsofGlobalOptimization Paramters Bounds OptimumValue lm 100to900mm 509.07mm θ 0to90◦ 0◦ β 0to90◦ 90◦ Fa NotApplicable 2.20kN isalmosthorizontal.Clearly,theoutcomeoftheunconstrainedoptimizationdoesnotmeetthehorizontalconstraint ofX (constraintg ). max 1 Theabovebehaviourisfurtherconfirmedby’DifferentialEvolution’alogrithmforglobaloptimization. Thebounds fordecisionvariableswerechosenjudiciouslytoallowforpracticalsolutions.Thealgorithmconvergeswithnon-zero jacobian,suggestingnon-existenceofanyrelativeminimuminthedesignspace.Theoutcome(Table3)isinlinewith theunconstrainedoptimizationresult,ifthenegativevaluesofθareneglectedforthelatercase. Case2:ConstrainedOptimization As mentioned in Section 3, constraints are of inequality type and Kuhn-Tucker conditions need to be satisfied [8]forobtainingminimumofF (Eq. (8)). Itisobservedfromtheunconstrainedoptimizationstudy(Case1)that a theproblemisill-posedwithnorelativeminimum. The’SLSQP’methodisemployedwiththreedecisionvariables viz. l , θ, β, considering the flexibility of imposing bounds via scipy.optimize.minimize function. The inequality m constraintsareappliedasperEq.(9). Bounds:l =[0mm,600mm], θ=[0◦,150◦], β=[40◦,90◦] m Initializationvector:l =100mm, θ=30◦, β=70◦ m The’SLSQP’algorithmtook16iterations,referFig.7,toconvergeatthesolutiongiveninTable4. TheabovesolutionisverifiedexpliciltyforcomplianceofconstraintsandtheresultsareshowninTable5. Fig.7.ConvergenceofSLSQPalgorithm LalaSuryaPrakashetal./Int.J.Adv.Appl.Math.andMech.7(3)(2020)1–10 9 Table4.Optimumsolutionwithconstraints Parameter OptimumValue lm 156.5mm θ 7.95◦ β 69.14◦ Fa 3.56kN Table5.Constraintscorrespondingtooptimalsolution Constraints ValueatX* g1 1.56×10−8mm g2 9.31mm g3 2.56×10−10mm 5. ResultsandDiscussions Asshownbytheunconstrainedandglobaloptimizationstudyinprevioussection, theoptimizationproblemof boom-actuatorsystem,withthreedecisionvariables,isanill-posedone.Theoutcomeoftheglobaloptimization,θ= 0◦andβ=90◦,isanintiuitiveone.Observingtheobjectivefunction(Eq.(8)),itisindicative(notobviousandneces- sary)thatactuatorforceminimizesasθ+β=90◦. However,solvingtheproblemunderconstraintsresultedinviable solutionwhichcanbeimplementedforhumanspaceflightprogram. 1. Basedontheresultsobtainedfromconstrainedoptimizationstudy,thederivedparametersarecomputedusing Eq. (4)and(11). Table4andTable6providesallparameters(Fig.2(b))todefinetheactuator-boomconfigura- tionasmodeledforthepresentstudy. 2. A single bracket structure is proposed to mount the actuator and boom. The bracket is rigidly fixed to ser- vicemodulestructure. X =329.9mm andY =437.6mm representstheoverallenvelopeofthebrackettobe designed. Itisobservedthatthehorizontalspanofthebracketisequaltomaximumspaceconstraintinthe horizontaldirection. So,itisprudenttokeepsomemarginwithactualvehicleenvelopepriortooptimization study. 3. CutoutinSMneedtobeconfiguredtoroutethefluid/electricallinesthroughbrackettotheboomandfinally toCM.Flexiblehosesarethefirstchoiceforfluidlinesconsideringthemovementrequiredduringseparation. However, caution shall be taken to bend the hoses properly in a smooth manner around the bracket-boom structure. Analternativeistousecombinationofflexiblehosesandrigidtubes. Flexiblehosesshallbeused fromSMtoboombottom,facilitatingthemovementduringseparation.Rigidtubesovertheboomispreferable asthereisnorelativemovementrequiredinthispartduringseparation. 4. Theminimumforcetobedeliveredbyactuatorisfoundtobe3.56kN (Table4).Thegeometriclength,l may a notbeconsideredasintiallength(non-actuatedcondtion)oftheactuator. Theactuatorcanbesmallerthan theoptimumvalueof491.5mm.Thismeansthattheactuatortobemountedonpassivestructuretosatisfythe geometricconstraintof491.5mm. 5. Theminimumforceobtainedfromconstrainedoptimizationisapplicableonlyfortheinitialconditionwhen theumbilicalsystemismatedwithCM.Thevariationofforcerequirementduetomovementofumbilicalsystem Table6.DerivedParameterscorrespondingtoOptimumsolution Parameter OptimumValue la 491.5mm X 329.9mm Y 437.6mm Ysp 459.3mm θ 37.95◦ f 10 MathematicalModelling&OptimizationofCrewModule-Service... Fig.8.ForcerequiredfromActuatorduringseparation isnecessarytodesigntheactuator. Expressionof X andY (Eq. (9))canbemanipulatedtoleadtofollowing geometricrelation. Y +l sinθ tanβ= m (13) X−l cosθ m UsingEq.(7)and(13),theforcerequiredbyactautorisplottedforθ=7.95◦to37.95◦(Fig.8). 6. Conclusion Asimplifieddynamicmodel, oftheproposedactuator-boomconfiguration, isformulatedbasedonrelevantas- sumptions.Theactuator-boomconfigurationisoptimizedconsideringconstraintsfrommissionandlaunchvehicle. Asthereisnogeneralruletoselectthebestalgorithm,itisrecommendedtoexplorethebehaviourofobjectivefunc- tionusingvariousavailablealgorithm. Inthiscase, theobjectivefunctionisexploredusingunconstrained, global andconstrainedoptimizationtechinques.Itisalsoshownthatevenincaseofill-posedenigneeringproblem,feasible solutionsarepossiblewithinthespecifiedgeometricandfunctionalconstraints.Theimplementationoftheobtained resultstoactualhardwareisalsodiscussedinbrief.Itisnotedthatthepresentstudydoesnottakeintoaccountiner- tialforcesduetolaunchvehiclemotion. Thisstudycanbefurthermodifiedtoincludestructuredynamicaspectsof boom. References [1] DepartmentofSpace,GovernmentofIndia,AnnualReport2018-2019, https://www.isro.gov.in/sites/default/files/annualreport2018-19.pdf,2019. [2] NASA,CSMOverview,https://www.hq.nasa.gov/alsj/CSMNewsRef-Boothman.html. [3] DamonDelap,JoelGliddenandChristopherLamoreaux,DevelopmentoftheOrionCrew-ServiceModuleMod- uleUmbilicalRetentionandReleaseMechanism, JohnWiley, 15thEuropeanSpaceMechanismsandTribology Symposium,Vol.718(2013). [4] JiaqiXu,andHwan-SikYoon,Areviewonmechanicalandhydraulicsystemmodelingofexcavatormanipulator system,JournalofConstructionEngineering2016(2016). [5] LeszekCedro,LinearizationandidentificationaMathematicalmodelofanexcavator,Proceedingsofthe201415th InternationalCarpathianControlConference(ICCC),IEEE(2014)73-79. [6] D.Halliday,R.ResnickandJ.Walker,FundamentalsofPhysics,JohnWiley&Sons,2010 [7] PauliVirtanen,RalfGommers,et.al.,andSciPy1.0Contributors.Scipy1.0–fundamentalalgorithmsforscientific computinginpython.arXive-prints,pagearXiv:1907.10121,Jul2019. [8] S.S.Rao,EngineeringOptimization:TheoryandPractice,NewAgeInternational,2006

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.