ebook img

Mathematical Modelling of Neural Oscillations in Hippocampal Memory Networks during Waking ... PDF

168 Pages·2017·10.1 MB·French
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Modelling of Neural Oscillations in Hippocampal Memory Networks during Waking ...

Mathematical Modelling of Neural Oscillations in Hippocampal Memory Networks during Waking and under General Anaesthesia Francesco Giovannini To cite this version: Francesco Giovannini. Mathematical Modelling of Neural Oscillations in Hippocampal Memory Net- works during Waking and under General Anaesthesia. Modeling and Simulation. Université de Lor- raine, 2017. English. ￿NNT: 2017LORR0182￿. ￿tel-01661465￿ HAL Id: tel-01661465 https://theses.hal.science/tel-01661465 Submitted on 12 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm (cid:201)cole doctorale IAEM Lorraine ModØlisation mathØmatique pour l’Øtude des oscillations neuronales dans des rØseaux de mØmoire hippocampiques pendant l’Øveil et sous anesthØsie gØnØrale Mathematical Modelling of Neural Oscillations in Hippocampal Memory Networks during Waking and under General Anaesthesia TH¨SE prØsentØe et soutenue publiquement le 19 Septembre 2017 pour l’obtention du Doctorat de l’UniversitØ de Lorraine (mention informatique) par Francesco GIOVANNINI Composition du jury Directeur : HUTT Axel, Directeur de Recherche (cid:224) l’INRIA Nancy Grand-Est Co-Directeur : BUHRY Laure, Ma(cid:238)tre de ConfØrences (cid:224) l’UniversitØ de Lorraine Rapporteurs : DESTEXHE Alain, Directeur de Recherche au CNRS ROUGIER Nicolas, ChargØ de Recherche (cid:224) l’INRIA Bordeaux Sud-Ouest Examinateurs : LOUIS-DORR ValØrie, Professeur (cid:224) l’UniversitØ de Lorraine BORAUD Thomas, Directeur de Recherche au CNRS Laboratoire Lorrain de Recherche en Informatique et ses Applications (cid:21) UMR 7503 Abstract Memory is commonly de(cid:28)ned as the ability to encode, store, and recall information we perceived. As we experience the world, we sense stimuli, we witness events, we ascertain facts, we study concepts, and we acquire skills. Although memory is an innate and familiar human behaviour, the interior workings of the brain which provide us with such faculties are far from being fully unravelled. Experimental studies have shown that during memory tasks, certain brain structures exhibit synchronous activity in the theta and gamma bands, which is thought to be correlated with the short-term memory maintenance of salient stimuli. The objective of this thesis is to use biologically-inspired mathematical modelling and simulations of neural activity to shed some light on the mechanisms enabling the emergence of these memory-related synchronous oscillations. We focusinparticularonhippocampalmnemonicactivityduringwake,andtheamnesiaandparadoxical memory consolidation occurring under propofol-induced general anaesthesia. We begin our work by introducing a detailed model of a type of persistent-(cid:28)ring pyramidal neuron commonly found in the CA3 and CA1 areas of the hippocampus. Persistent (cid:28)ring is thought to be oneofthemechanismsunderlyingactivemaintenanceofstimuliinshort-termandworkingmemory. Ourmodelneuronanditsparametersarederivedfromexperimentalin-vitrorecordingsofpersistent (cid:28)ring hippocampal neurons carried out by our collaborators Beate Knauer and Motoharu Yoshida at the Ruhr University in Bochum, Germany. The model captures all the speci(cid:28)c characteristics of in-vitro intrinsic persistent (cid:28)ring. Stimulated with a brief transient current pulse, these neurons continuedischargingactionpotentialsafterthestimulusceases. Thispersistentactivityismediated by cholinergic calcium-activated non-speci(cid:28)c (CAN) receptors and can last for long delay periods, in the order of several tens of seconds. Moreover, persistent (cid:28)ring is maintained solely by intrinsic cellular mechanisms, and does not require synaptic activity nor external stimulation. Subsequently,weturnourattentiontothedynamicsofapopulationcomprisingsuchinterconnected pyramidal-CAN neurons. We hypothesise that networks of persistent (cid:28)ring neurons could provide the neural mechanism for the maintenance of memory-related hippocampal oscillations. The (cid:28)ring patterns elicited by this network are in accord with both experimental recordings and modelling studies. In addition, the network displays self-sustained oscillatory activity in the theta frequency. Whenconnectingthepyramidal-CANnetworktofast-spikinginhibitoryinterneurons, thedynamics of the model reveal that feedback inhibition improves the robustness of fast theta oscillations, by tightening the synchronisation of the pyramidal CAN neurons. We demonstrate that, in the model, the frequency and spectral power of the oscillations are modulated solely by the cholinergic mechanisms mediating the intrinsic persistent (cid:28)ring, allowing for a wide range of oscillation rates withinthethetaband. Thisisabiologicallyplausiblemechanismforthemaintenanceofsynchronous theta oscillations in the hippocampus which aims at extending the traditional models of septum- driven hippocampal rhythmic activity. Inaddition,westudythedisruptivee(cid:27)ectsofgeneralanaesthesiaonhippocampalgamma-frequency oscillationstogainsomeinsightsonthemechanismscausingamnesiaandsometimesmemoryforma- tion in anaesthetised patients. Gamma oscillatory frequency range is often recorded in functionally- coupled brain regions for cooperation during memory tasks, and this rhythmic behaviour is thought to result from synaptic GABAergic interactions between interneurons. Interestingly, GABAergic synaptic and extrasynaptic receptors have been shown to be the preferred target of the most com- monly used anaesthetic agents. We present an in-depth study of the action of anaesthesia on neural oscillationsbyintroducinganewcomputationalmodelwhichtakesintoaccountthefourmaine(cid:27)ects of the anaesthetic agent propofol on GABAergic hippocampal interneurons. Our results indicate that propofol-mediated tonic inhibition contributes to an unexpected enhancement of synchroni- sation in the activity of a network of hippocampal interneurons. This enhanced synchronisation could provide a possible mechanism supporting the occurrence of intraoperative awareness, explicit memory formation, and even paradoxical excitation under general anaesthesia, by facilitating the communication between brain structures which should supposedly be not allowed to do so when i anaesthetised. Tocompletethiswork,wedevelopedapythonlibraryofionictransmembranalcurrentstobeassem- bled together to create template neurons and a library which acts as a wrapper for the simulation parameters. Thepurposeoftheseistospeedupsimulationset-uptimeandreducecodeduplication across simulation scripts. Both libraries are aimed at extending the functionality provided by the Brian simulator. In conclusion, the (cid:28)ndings described within this thesis provide new insights into the mechanisms underlyingmnemonicneuralactivity,bothduringwakeandanaesthesia,openingcompellingavenues for future work. Understanding the neural processes behind memory formation is a paramount task for clinical applications tackling neurodegenerative memory diseases, and anaesthesia monitoring. Keywords: memory, hippocampus, oscillations, general anaesthesia ii RØsumØ La mØmoire est communØment dØ(cid:28)nie comme la capacitØ de coder, stocker et rappeler les infor- mations que nous percevons. (cid:192) mesure que nous Øprouvons le monde, nous ressentons des stimuli, nous assistons (cid:224) des ØvØnements, nous constatons des faits, nous Øtudions des concepts et nous acquØrons des compØtences. Bien que la mØmoire soit un comportement humain innØ et familier, les mØcanismes cØrØbraux qui nous fournissent de telles facultØs sont loin d’Œtre entiŁrement dØmŒlØs. De nombreuses Øtudes expØrimentales ont montrØ que, lors des t(cid:226)ches de mØmoire, certaines struc- tures cØrØbrales produisent une activitØ synchrone dans les bandes thŒta et gamma, qui est censØe Œtre corrØlØe avec la maintenance (cid:224) court terme de la mØmoire des stimuli saillants. L’objectif de cette thŁse est d’utiliser la modØlisation mathØmatique biologiquement inspirØe et la simulation d’activitØ neuronale pour Øclairer les mØcanismes permettant l’Ømergence de ces oscillations liØes (cid:224) la mØmoire. Nous nous concentrons en particulier sur l’activitØ mnØmonique de l’hippocampe pendant l’Øtat ØveillØ, et l’amnØsie et la consolidation de la mØmoire paradoxale se produisant sous anesthØsie gØnØrale induite par le propofol. Nous commen(cid:231)ons notre travail en introduisant un modŁle dØtaillØ d’un type de neurone pyrami- dal (cid:224) tir persistant couramment trouvØ dans les zones CA3 et CA1 de l’hippocampe. On pense que l’activitØ persistante puisse Œtre l’un des mØcanismes qui sous-tendent la maintenance active des stimuli dans la mØmoire (cid:224) court terme et la mØmoire travail. Notre neurone modŁle et ses paramŁtres sont dØrivØs d’enregistrements in vitro expØrimentaux de neurones (cid:224) tir persistants dans l’hippocampe, rØalisØs par nos collaborateurs Beate Knauer et Motoharu Yoshida (cid:224) l’UniversitØ de la Ruhr (cid:224) Bochum, en Allemagne. Le modŁle capture toutes les caractØristiques spØci(cid:28)ques du tir persistant intrinsŁque observØ in vitro. StimulØs par une courte impulsion de courant transitoire, cesneuronescontinuent(cid:224)dØchargerdespotentielsd’actionaprŁsl’arrŒtdelastimulation. Cetteac- tivitØ persistante est mØdiØe par des rØcepteurs non spØci(cid:28)ques cholinergiques activØs par le calcium (CAN) et peuvent durer pour des longues pØriodes dans l’ordre de plusieurs dizaines de secondes. En outre, le tir persistant est maintenu uniquement par des mØcanismes cellulaires intrinsŁques, et ne nØcessite pas d’activitØ synaptique ni stimulation externe. Par la suite, nous attirons notre attention sur la dynamique d’une population de ces neurones pyramidaux-CAN interconnectØs. Nous supposons que les rØseaux de neurones (cid:224) tir persistant pourraient fournir le mØcanisme neuronal pour la maintenance des oscillations hippocampiques liØes (cid:224) la mØmoire. Les patterns d’activitØ gØnØrØs par ce rØseau sont en accord avec les enreg- istrements expØrimentaux et les Øtudes de modØlisation. De plus, le rØseau exposent une activitØ oscillante auto-soutenue dans la frØquence thŒta. Lors de la connexion du rØseau pyramidal-CAN (cid:224) des interneurones inhibiteurs rapides, la dynamique du modŁle rØvŁle que l’inhibition rØtroactive amØliore la robustesse des oscillations thŒta rapides, en resserrant la synchronisation des neurones pyramidaux-CAN. Nous dØmontrons que, dans le modŁle, la frØquence et la puissance spectrale des oscillations sont modulØes uniquement par les mØcanismes cholinergiques mØdiant le tir persistant intrinsŁque, permettant une large gamme de frØquences d’oscillation dans la bande thŒta. Il s’agit d’un mØcanisme biologiquement plausible pour la maintenance des oscillations thŒta synchrones dans l’hippocampe qui vise (cid:224) Øtendre les modŁles traditionnels d’activitØ rythmique hippocampique entra(cid:238)nØe par le septum. En outre, nous Øtudions les e(cid:27)ets perturbateurs de l’anesthØsie gØnØrale sur les oscillations gamma dans l’hippocampe pour obtenir des aper(cid:231)us sur les mØcanismes provoquant l’amnØsie et parfois la formation de la mØmoire chez les patients anesthØsiØs. La gamme de frØquences oscillantes gamma est souvent enregistrØe dans les rØgions cØrØbrales couplØes fonctionnellement pour la coopØration pendant les t(cid:226)ches de mØmoire, et ce comportement rythmique rØsulte d’interactions synaptiques GABAergiques entre les interneurones. Fait intØressant, les rØcepteurs synaptiques et extrasy- naptiques GABAergiques se sont avØrØs Œtre la cible prØfØrØe des agents anesthØsiques les plus couramment utilisØs, et notamment du propofol. Nous prØsentons une Øtude approfondie de l’action de l’anesthØsie sur les oscillations neuronales en introduisant un nouveau modŁle computationnel iii qui prend en compte les quatre principaux e(cid:27)ets de l’agent anesthØsique propofol sur les rØcep- teurs GABAA. Nos rØsultats indiquent que l’inhibition tonique mØdiØe par le propofol contribue (cid:224) une amØlioration inattendue de la synchronisation de l’activitØ d’un rØseau d’interneurones hip- pocampiques. Cette augmentation de synchronisation pourrait fournir un mØcanisme possible pour l’apparitiondelaconscienceintra-opØratoire,delaformationexplicitedelamØmoire,etmŒmed’une excitation paradoxale sous anesthØsie gØnØrale, en facilitant la communication entre des structures cØrØbrales qui me devraient pas Œtre autorisØes (cid:224) le faire lorsqu’elles sont anesthØsiØes. Pour complØter ce travail, nous avons dØveloppØ une bibliothŁque de courants transmembraniques ioniques(cid:224)assemblerpourcrØerdesneuronesmodŁlesainsiqu’unebibliothŁquequigŁrelesparamŁtres des simulations. Le but est d’accØlØrer le temps de con(cid:28)guration des simulations et de rØduire la duplication de code sur les scripts de simulation. Les deux bibliothŁques visent (cid:224) Øtendre les fonc- tionnalitØs fournie par le simulateur Brian. En conclusion, les rØsultats prØsentØs dans cette thŁse fournissent de nouvelles idØes sur les mØcan- ismessous-jacentsdel’activitØneuronalemnØmonique, (cid:224)lafoisaucoursdel’ØveiletsousanesthØsie gØnØrale, en ouvrant des voies convaincantes pour des travaux futurs. Comprendre les processus neuronaux sous-jacents la formation de la mØmoire est une t(cid:226)che primordiale pour les applications cliniques qui s’attaquent aux maladies de la mØmoire neurodØgØnØratives et (cid:224) la surveillance de l’anesthØsie. Mots-clØs: mØmoire, hippocampe, oscillations, anesthØsie gØnØrale iv Acknowledgements I would like to thank my PhD advisors, Laure Buhry and Axel Hutt, for their help and supervision. Iwouldexpresssinceregratitudetomythesiscommittee(cid:21)ThomasBoraud, AlainDestexhe, ValØrie Louis-Dorr, and Nicolas Rougier (cid:21) for taking their time to examine my manuscript and to attend my defence. Your questions and comments were as copious as they were invaluable. I would like to thank Motoharu Yoshida for the fruitful discussions on the modelling aspects of hippocampal persistent (cid:28)ring, and for inviting me to his laboratory. I am grateful to Laurent Bougrain and Dave Ritchie for always having some spare time for a chat during the last three years. I would like to thank the entirety of Team Neurosys for having accompanied me so far. IwouldliketothankmycolleaguesMaximeClØment,MariiaFedotenkova,IæakiFernandez,Meysam Hashemi, Cecilia Lindig-Le(cid:243)n, Guillaume SerriŁre, Nicole Voges, and Nadjib Med Zennir for pro- viding me with the chance to argue with every single one of you. I really needed that. I would like to thank Laurence Benini, Isabelle Herlich, and HØlŁne Cavallini for their invaluable human and administrative support. I would like to thank Tamara To†i¢ for teaching me that people take from you exactly what you choose to give them. I would like to thank Rahaf Al-Chwa for teaching me to appreciate the simplicity in life. I would like to thank SØbastien Rimbert for teaching me that, ultimately, we are all in the same boat. I would like to thank Beate Knauer for motivating me to work when times were dire, as well as for sharing her expertise and, lastly, the electrophysiological data. I would like to thank Guido Gigante for teaching me how to carry out research, although I should really blame him for dragging me into this evil world. I would like to thank John Stonham for teaching me to never stop asking "Why?". Finally, I thank my loving family and my friends for being present exactly the right amount. I would like to thank Dionysios Kalantzis for teaching me to care. I would like to thank Argyris Papadakis for teaching me to take life one step at a time. I would like to thank Mohammad Rashid for teaching me to never stop pursuing dreams. I would like to thank Simone Carn(cid:236) for teaching me the true meaning of perseverance. I would like to thank Carlo Pandini for teaching me what responsibility really is. I would like to thank Filomena Cuseo for teaching me that love knows no borders. Ringrazio mia nonna Maria per avermi insegnato a vivere la vita con freschezza e allegria. Ringrazio mio nonno Paolo per avermi insegnato a puntare in alto. Ringrazio mia nonna Gina per avermi insegnato la forza del sorriso di chi non molla mai di fronte alle di(cid:30)colt(cid:224). Ringrazio mio nonno Filippo per avermi insegnato che se uno fa qualcosa deve farla bene, altrimenti tanto varrebbe non fare niente. Ringrazio mia madre Franca per avermi insegnato cosa sia l’amore incondizionato. Ringrazio mio padre Marco per avermi insegnato, da buon rugbysta, l’impegno, la dedizione e il sacri(cid:28)cio. Ringrazio mio fratello Filippo per avermi insegnato a prendere sempre la vita a mozzichi. Ringrazio mio fratello Paolo per avermi insegnato ad essere paziente. v

Description:
Modélisation mathématique pour l'étude des oscillations neuronales dans des réseaux de mémoire hippocampiques pendant l'éveil et sous anesthésie générale. Mathematical Modelling of Neural Oscillations in Hippocampal Memory. Networks during Waking and under General Anaesthesia. THÈSE.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.