ebook img

Mathematical Modelling and Biomechanics of the Brain PDF

160 Pages·2019·2.412 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Modelling and Biomechanics of the Brain

Fields Institute Monographs 37 The Fields Institute for Research in Mathematical Sciences Corina Drapaca Siv Sivaloganathan Mathematical Modelling and Biomechanics of the Brain Fields Institute Monographs VOLUME 37 The Fields Institute for Research in Mathematical Sciences FieldsInstituteEditorialBoard: IanHambleton,Director HuaxiongHuang,DeputyDirectoroftheInstitute JamesG.Arthur,UniversityofToronto KennethR.Davidson,UniversityofWaterloo LisaJeffrey,UniversityofToronto BarbaraLeeKeyfitz,OhioStateUniversity ThomasS.Salisbury,YorkUniversity NorikoYui,Queen’sUniversity JurisSteprans,YorkUniversity TheFieldsInstituteisacentreforresearchinthemathematicalsciences,locatedin Toronto,Canada.TheInstitutesmissionistoadvanceglobalmathematicalactivity intheareasofresearch,educationandinnovation.TheFieldsInstituteissupported bytheOntarioMinistryofTraining,CollegesandUniversities,theNaturalSciences and Engineering Research Council of Canada, and seven Principal Sponsoring UniversitiesinOntario(Carleton,McMaster,Ottawa,Queen’s,Toronto,Waterloo, WesternandYork),aswellasbyagrowinglistofAffiliateUniversitiesinCanada, theU.S.andEurope,andseveralcommercialandindustrialpartners. Moreinformationaboutthisseriesathttp://www.springer.com/series/10502 Corina Drapaca • Siv Sivaloganathan Mathematical Modelling and Biomechanics of the Brain 123 CorinaDrapaca SivSivaloganathan CollegeofEngineering DepartmentofAppliedMathematics PennStateUniversity UniversityofWaterloo UniversityPark,PA,USA Waterloo,ON,Canada ISSN1069-5273 ISSN2194-3079 (electronic) FieldsInstituteMonographs ISBN978-1-4939-9809-8 ISBN978-1-4939-9810-4 (eBook) https://doi.org/10.1007/978-1-4939-9810-4 Mathematics Subject Classification (2010): 92C10, 74L15, 74Fxx, 78A70, 92C50, 76Z05, 92C05, 35Q35,35Q72 ©SpringerScience+BusinessMedia,LLC,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Coverillustration:DrawingofJ.C.FieldsbyKeithYeomans ThisSpringerimprintispublishedbytheregisteredcompanySpringerScience+BusinessMedia,LLC partofSpringerNature. Theregisteredcompanyaddressis:233SpringStreet,NewYork,NY10013,U.S.A. Inmemoryof PinoTenti,teacher,mentor, colleague,friend,andtoourparents,spouses andchildrenfortheirlove,support, inspiration,andforbearance! “Wecarryinsideus,thewondersthatwe seekoutsideus.”Rumi Preface The brain is one of the most important organs in the human body and serves as the control center for the nervous system supporting all the required functions of the body parts and other physiological sub-systems. In a typical human being, the cerebral cortex (the largest part of the brain) is estimated to contain 15–33 billion neurons, each connected by synapses to several thousands of other neurons. Inter- neuronalcommunicationisfacilitatedbymeansoflongprotoplasmicfiberscalled axons,whichcarrytrainsofsignalpulsesoractionpotentialstodistantpartsofthe brainorbodytargetingspecificrecipientcells. Adevelopmentofafundamentalunderstandingoftheformandfunctionofthe brainissomethingthathaspreoccupiedscientistsandthinkersformillennia.From amorepragmaticpointofview,itisalsoquiteclearlynecessaryinordertoprovide accurate diagnostics and optimal therapies for neurological disorders and proper protectioninjobsandsports,whichexposeindividualstohighrisksofbraininjuries, andtodeveloppatternstoenhancelearningabilitiesforthosewhosecognitivebrain functionhasbeenimpaired.Theenormoustechnologicaladvanceswitnessed,over the last few decades, in numerous areas of human endeavor have contributed to unprecedentedprogressinbrainscience,asaresultofmoreaccuratemeasurements and the ability to carry out very large-scale computer simulations quickly and efficiently.Despiteallthisdramaticprogress,thereiscurrentlyarealneedtobridge andsynthesizebraininformationavailablefromdisparate,disjointdisciplinessuch as medicine, neuroscience, neurobiology, biomechanical engineering, biophysics, biochemistry, mathematics, and computer science. The main challenge for such multidisciplinaryresearcheffortsistoestablishacommonlanguagethatfacilitates fruitful and efficient communication among researchers with different expertise. In particular, it is our contention that mathematical modeling provides the pivotal, unifyingframeworkforbrainsciencesinceitiscapableofutilizingthebio-chemo- physical phenomena that govern brain mechanisms to predict brain responses to variousstimuliandcanalsoproviderationalguidanceforthedesignofexperimental toolsandprotocolsforstudyingthebrain.Therefore,theaimofthismonographisto provideanaccessibleyetrigorouspresentationofsomefundamentalmathematical conceptsusedinmodelingbrainmechanics.Inthiscontext,wepresentanoverview vii viii Preface ofthemechanicalmodelsforhydrocephalus,traumaticbraininjuries,tumorgrowth, and aneurisms. The book is intended as a brief introduction to both theoreticians and experimentalists interested in brain mechanics, with directions and guidance forfurtherreading,forthosewhowishtopursueparticulartopicsingreaterdepth. It can also be used as a complementary textbook in a graduate level course for neuroscientistsandneuroengineers. Toronto,ON,Canada CorinaDrapaca Toronto,ON,Canada SivSivaloganathan June2018 Contents 1 Introduction .................................................................. 1 2 BriefReviewofContinuumMechanicsTheories......................... 5 2.1 Kinematics............................................................... 5 2.2 ConservationLaws...................................................... 10 2.2.1 ConservationofMass........................................... 10 2.2.2 ConservationofLinearMomentum............................ 11 2.2.3 ConservationofAngularMomentum.......................... 13 2.2.4 ConservationofMechanicalEnergy........................... 13 2.3 ConstitutiveLaws....................................................... 14 2.3.1 Noll’sPrinciples ................................................ 15 2.3.2 SimpleMaterials................................................ 15 2.3.3 Non-agingMaterials............................................ 16 2.3.4 InvarianceUnderRotationoftheReferenceFrame........... 17 2.3.5 MaterialSymmetries............................................ 17 2.3.6 InternalMaterialConstraints................................... 19 2.3.7 SecondLawofThermodynamics.............................. 20 2.3.8 ExamplesofConstitutiveLaws................................ 21 2.4 Non-localTheories...................................................... 29 References..................................................................... 34 3 MechanicsofHydrocephalus............................................... 39 3.1 BackgroundandSignificance........................................... 39 3.2 MathematicalModels................................................... 42 3.2.1 Pressure-VolumeModels....................................... 42 3.2.2 ConsolidationModels .......................................... 48 References..................................................................... 69 4 ModelingTraumaticBrainInjuries,Aneurysms,andStrokes ......... 75 4.1 BackgroundandSignificance........................................... 75 4.2 MathematicalModels................................................... 79 4.2.1 ModelsofTraumaticBrainInjuries............................ 79 ix x Contents 4.2.2 ModelsofAneurysms .......................................... 94 4.2.3 ModelsofStrokes............................................... 106 References..................................................................... 117 5 ModelsofTumorGrowth................................................... 127 5.1 BackgroundandSignificance........................................... 127 5.2 MathematicalModels................................................... 130 5.2.1 MicroscopicModels............................................ 136 5.2.2 MultiscaleModels.............................................. 139 5.2.3 MacroscopicModels............................................ 142 References..................................................................... 147 6 ConcludingRemarks ........................................................ 153 Chapter 1 Introduction Mathematicsisplayinganevermoreimportantroleinthebiomedicalsciencesand hasbeenthecatalystforablurringofboundariesbetweenscientificdisciplinesinthe naturalsciencesandaresurgenceofinterestinthemodernaswellasclassicalmeth- ods of applied mathematics. The development of new disciplines (and new ideas) is a natural consequence of this highly synergistic interaction of the biomedical andmathematicalsciences,spurredonbydramaticandfar-reachingdevelopments on the research frontiers of applied mathematics, as computational disciplines, dynamical systems, stochastic analysis, chaos (amongst others), reinvigorate and reinforcethetraditionaldisciplinesofappliedmathematics. Inthelastfourtofivedecades,thegeneralfieldofBiomechanicshasexpanded dramatically, and advances have been made on many fronts. Biomechanics is the applications of mechanics to biology and seeks to understand the mechanics of living systems. In this monograph, we focus on the biomechanics of the central nervous system. Thus the purpose of this monograph is to present an overview of mathematical models of brain conditions and diseases as encountered in the BiomedicalSciences,andalsotoencourageandstimulateclosersynergyandinter- action between the Biomedical and Mathematical Sciences. Brain biomechanics is the study of the brain using mathematical methods and models to help predict andexplaintheresponseofbraintissueundervariouscircumstances.Theunifying aim of mathematical modelling and experimental studies in brain biomechanics is the elucidation of the underlying biological mechanisms and processes that lead toparticularobservedphenomena(e.g.braintissuecompressioninhydrocephalus, brain tumours etc.). It is (of course) clear that mathematical descriptions of biological phenomena are not biological explanations. Apart from its explanatory power,thetruetestofanymathematicaldescriptionortheoryisinitspredictions. But why use mathematics to study anything as intrinsically complicated as the human brain? Our contention is that mathematics, in particular mathematical modelling, must be used if we are ever to stand a chance of converting an under- standingofunderlyingmechanismsintoagenuinelyrealisticandpredictivescience. ©SpringerScience+BusinessMedia,LLC,partofSpringerNature2019 1 C.Drapaca,S.Sivaloganathan,MathematicalModellingandBiomechanics oftheBrain,FieldsInstituteMonographs37, https://doi.org/10.1007/978-1-4939-9810-4_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.