ebook img

Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics PDF

252 Pages·2020·16.169 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics

Jialun Liu Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics Jialun Liu Mathematical Modeling of Inland Vessel Maneuverability Considering Rudder Hydrodynamics 123 Jialun Liu WuhanUniversity ofTechnology Wuhan, Hubei, China ISBN978-3-030-47474-4 ISBN978-3-030-47475-1 (eBook) https://doi.org/10.1007/978-3-030-47475-1 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my wife Shijie, my muse. Jialun Liu Preface Themotivationforwritingthismonographwastoprovideknowledgeaboutinland vessel maneuverability and ship rudders that affect ship performance to a large extent. The ideas are put forward together by a broad literature review of the-state-of-the-art research in this field and the specified work on the impacts of rudders on inland vessel maneuvering performance. The contents were partly published in my doctoral thesis entitled ‘Impacts of Rudder Configurations on Inland Vessel Maneuverability’ from Delft University of Technology [1]. The manuscript was rephrased and updated to provide more detailed information than the original thesis. This monograph is intended as a reference monograph for modeling inland vessel motions and selecting proper rudder configurations to a wide range of researchers, engineers, and students. Ship maneuverability is fundamental for the navigation safety of ships. Furthermore, through the equipment used for maneuvering, it also affects the investment, operation, and maintenance cost of these ships. Ships are primarily designed from an economic point of view. To ensure and improve maritime effi- ciency,researchon inland vessel maneuverability deservesmore attentionthan the present situation. Most of the research on maneuverability has been performed for seagoing ships. Since sailing conditions and ship particulars between seagoing ships and inland vessels are different, the impacts of these differences on maneu- vering prediction and evaluation should be carefully considered, which are addressed in this monograph. Inland vessels should be designed in such a way that they should always be capable of maneuvering without significantly harming the cost-effectiveness of operations. One of the biggest differences between seagoing ships and inland vessels is the rudder configuration. Conventionally, seagoing ships have similar single-rudder configurations while inland vessels have more complex multiple-rudderconfigurations.Althoughmultiple-rudderconfigurationscanhavea positive effect on maneuverability, they often have a negative effect on resistance and, therefore, also a negative effect on fuel consumption. vii viii Preface Quantitative impacts of the rudder configuration on ship maneuverability have not been fully understood, especially for multiple-rudder configurations with complex rudder profiles. These differences in the rudder configuration may sig- nificantly change the ship maneuvering behaviors and, therefore, should require further research, especiallyforinlandvessels thatcommonlyequipwithmorethan two rudders. Moreover, to compare and evaluate the maneuvering performance of inland vessels with different configurations, the existing maneuvering tests and standards for inland vessels are less elaborate than those for seagoing ships. An accurate estimation of rudder forces and moments is needed to quantify the impacts of the rudder configurations on ship maneuvering performance. This monograph explained the fundamentals of Computational Fluid Dynamics and appliedbestpracticesoftheReynolds-AveragedNavier-Stokes(RANS)methodto obtain rudder hydrodynamic characteristics and integrated the RANS results into maneuveringmodels.Additionally,newmaneuversandcriteriahavebeenproposed for the prediction and evaluation of inland vessel maneuverability. Simulations of ships with various rudder configurations were conducted to analyze the impacts of rudderconfigurationsonshipmaneuverabilityindifferentclassicandproposedtest maneuvers.Accordingly,guidanceonruddersforinlandvesselmaneuverabilityhas been summarized for practical engineers to make proper design choices. Throughtheresearchpresentedinthismonograph,itisclearthatdifferentrudder configurationshavedifferenthydrodynamiccharacteristics,whichareinfluencedby theprofile,theparameters,andthetypeofaspecificconfiguration.Newregression formulas have been proposed for naval architects to quickly estimate the rudder induced forces and moments in maneuvering. Furthermore, an integrated maneu- vering model has been proposed and validated for both seagoing ships and inland vessels. Using the proposed regression formulas and maneuvering model, the impacts of rudder configurations on inland vessel maneuverability have been studied. Themaneuveringperformanceofatypicalinlandvesselcanbeimprovedby5to 30% by changing the rudder configuration. The rudder configuration should be capableofprovidingsufficientmaneuveringforcesandthenoptimizedtoreducethe rudder induced resistance. In general, well-streamlined profiles are good for effi- ciencybutnotasgoodashigh-liftprofilesforeffectiveness.Asasummary,theship maneuvering performance can be improved by using effective profiles, enlarging thetotalrudderarea,acceleratingtherudderinflowvelocity,increasingtheeffective rudder aspect ratios, and enlarging the spacing among multiple rudders. Iwouldliketoacknowledgemydoctoralsupervisors,Dr.Ir.RobertHekkenberg andProf.HansHopmanfromDelftUniversityofTechnology,fortheirsupportand contribution to this monograph. Special thanks go to Mr. Frans Quadvlieg from MaritimeResearch Institute Netherlands (MARIN) for advising andimprovingthe presented research. I am grateful to the members of my doctoral committee, Prof. Dr. Hironori Yasukawa (Hiroshima University), Prof. Dr.-Ing Bettar Ould el Preface ix Moctar (University of Duisburg-Essen), Prof. Dr. Ir. Rene Huijsmans (Delft University of Technology), Prof. Dr. Dirk Roekaerts (Delft University of Technology),andDr.Henk deKoningGans(Delft University ofTechnology),for reviewing and commenting on the thesis that lays a good foundation for this monograph. I would also like to say thanks to Prof. Xinping Yan, Prof. Xiumin Chu, Prof. Xuming Wang, and Dr. Feng Ma that help me to continue the research topic and further extend it for autonomous ships in Wuhan University of Technology. Contributions from Mr. Bingqian Zhao are acknowledged for providing data of inland vessels in China for explanations and validation. Furthermore, the effort of students, including, but not limited to, Song Zhang, Suli Lu, Jinyu Kan, and Yanyun Zhang, who helped to review and edit the content is acknowledged. The contents in the monograph were initially supported by China Scholarship Council (201206950025) from September 2012 to February 2017. The research is further supported by National Key R&D Program of China (2018YFB1601505), ResearchonIntelligentShipTestingandVerification([2018]473),NationalNatural Science Foundation of China (51709217), Natural Science Foundation of Hubei Province (2018CFB640), and State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (1707) since March 2017. Wuhan, China Jialun Liu March 2020 Reference 1. Liu, J. (2017). Impacts of Rudder Configurations on Inland Vessel Manoeuvrability. PhD thesis,DelftUniversityofTechnology Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Applied Terminologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Inland Waterway Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Inland Vessel Maneuverability. . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Arrangements of the Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Design and Evaluation of Ship Rudders . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction to Ship Rudders. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Rudder Working Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Reynolds Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Angles of Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Concluding Remarks of Rudder Working Conditions. . . . . 17 2.3 Rudder Design Choices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Rudder Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Rudder Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Rudder Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.4 Concluding Remarks of Rudder Design Choices . . . . . . . . 28 2.4 Interaction Effects on Rudders. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Hull Flow Straightening Effects . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Propeller Slipstream Effects . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.3 Relative Positions of Rudders to Hull and Propeller. . . . . . 31 2.4.4 Multiple-Rudder Interactions . . . . . . . . . . . . . . . . . . . . . . 32 2.4.5 Concluding Remarks of Interaction Effects on Rudders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 Rudder Performance Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5.1 Ship Maneuvering Performance . . . . . . . . . . . . . . . . . . . . 33 2.5.2 Fuel Consumption Performance . . . . . . . . . . . . . . . . . . . . 35 2.5.3 Rudder Cavitation Performance . . . . . . . . . . . . . . . . . . . . 36 2.5.4 Concluding Remarks of Rudder Performance . . . . . . . . . . 37 xi xii Contents 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Computational Fluid Dynamics Methods of Ship Rudders . . . . . . . . 45 3.1 Governing Equations of Fluid Dynamics . . . . . . . . . . . . . . . . . . . 46 3.2 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.1 Spalart–Allmaras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.2 Standard k-e, RNG k-e, and Realizable k-e . . . . . . . . . . . . 50 3.2.3 Standard k-x and k-x SST. . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.4 Concluding Remarks of Turbulence Models . . . . . . . . . . . 51 3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Velocity Inlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.2 Pressure Outlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.3 Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.4 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3.5 Concluding Remarks of Boundary Conditions. . . . . . . . . . 53 3.4 Numerical Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 Mesh Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Domain Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.5.3 Grid Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.4 3D Domain and Meshes. . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5.5 Grid Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.6 Concluding Remarks of Mesh Generation . . . . . . . . . . . . . 67 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4 Hydrodynamic Characteristics of Ship Rudders. . . . . . . . . . . . . . . . 71 4.1 Validation of RANS Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.1 Validation of the 2D RANS Method. . . . . . . . . . . . . . . . . 71 4.1.2 Validation of the 3D RANS Method. . . . . . . . . . . . . . . . . 73 4.1.3 Concluding Remarks of Validation of the RANS Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 2D RANS Study on Rudder Hydrodynamics . . . . . . . . . . . . . . . . 74 4.2.1 Impacts of Reynolds Numbers on Rudder Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.2 Impacts of Profiles on Single-Rudder Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.3 Impacts of Spacing on Twin-Rudder Hydrodynamics. . . . . 78 4.2.4 Impacts of Profiles on Twin-Rudder Hydrodynamics . . . . . 81 4.2.5 Impacts of Spacing on Quadruple-Rudder Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3 3D RANS Study on Rudder Hydrodynamics . . . . . . . . . . . . . . . . 85 4.4 Regression of Rudder Hydrodynamic Coefficients . . . . . . . . . . . . 87

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.