ebook img

Mathematical Methods in Physics: Partial Differential Equations, Fourier Series, and Special Functions PDF

847 Pages·2009·7.588 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Methods in Physics: Partial Differential Equations, Fourier Series, and Special Functions

i i i i Mathematical Methods in Physics i i i i i i i i Mathematical Methods in Physics Partial Differential Equations, Fourier Series, and Special Functions Victor Henner Tatyana Belozerova Kyle Forinash AKPeters,Ltd. Wellesley,Massachusetts i i i i i i i i Editorial,Sales,andCustomerServiceOffice AKPeters,Ltd. 888WorcesterStreet,Suite230 Wellesley,MA02482 www.akpeters.com Copyright c 2009byAKPeters,Ltd. (cid:13) All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechani- cal,includingphotocopying,recording,orbyanyinformationstorageand retrievalsystem,withoutwrittenpermissionfromthecopyrightowner. LibraryofCongressCataloging-in-PublicationData Henner,Victor. Mathematicalmethodsinphysics:partialdifferentialequations,Fourierseries, andspecialfunctions/VictorHenner,TatyanaBelozerova,KyleForinash. p. cm. Includesbibliographicalreferencesandindex. ISBN978-1-56881-335-6(alk. paper) 1. Mathematical physics–Textbooks. I. Belozerova, Tatyana. II. Forinash, Kyle. III.Title. QC20.H4872009 530.15–dc22 2008022076 PrintedinIndia 1312111009 10987654321 i i i i i i i i To Bruce Adams, a great friend i i i i i i i i Contents Introduction xi 1 FourierSeries 1 1.1 PeriodicProcessesandPeriodicFunctions . . . . . . . . 1 1.2 FourierFormulas . . . . . . . . . . . . . . . . . . . . . 3 1.3 OrthogonalSystemsofFunctions . . . . . . . . . . . . . 7 1.4 ConvergenceofFourierSeries . . . . . . . . . . . . . . 9 1.5 FourierSeriesforNonperiodicFunctions . . . . . . . . 16 1.6 FourierExpansionsonIntervalsofArbitraryLength . . . 16 1.7 FourierSeriesinCosineorSineFunctions . . . . . . . . 18 1.8 TheComplexFormoftheFourierSeries . . . . . . . . . 30 1.9 ComplexGeneralizedFourierSeries . . . . . . . . . . . 33 1.10 FourierSeriesforFunctionsofSeveralVariables . . . . 35 1.11 UniformConvergenceofFourierSeries . . . . . . . . . 36 1.12 TheGibbsPhenomenon . . . . . . . . . . . . . . . . . . 41 1.13 CompletenessofaSystemofTrigonometricFunctions . 42 1.14 General Systems of Functions: Parseval’s Equality and Completeness . . . . . . . . . . . . . . . . . . . . . . . 44 1.15 ApproximationofFunctionsintheMean . . . . . . . . . 45 1.16 FourierSeriesofFunctionsGivenatDiscretePoints . . . 49 1.17 SolutionofDifferentialEquationsbyUsingFourierSeries 51 1.18 FourierTransforms . . . . . . . . . . . . . . . . . . . . 55 1.19 TheFourierIntegral . . . . . . . . . . . . . . . . . . . . 60 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 vii i i i i i i i i viii Contents 2 Sturm-LiouvilleTheory 79 2.1 TheSturm-LiouvilleProblem . . . . . . . . . . . . . . . 79 2.2 MixedBoundaryConditions . . . . . . . . . . . . . . . 90 2.3 ExamplesofSturm-LiouvilleProblems . . . . . . . . . 95 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3 One-DimensionalHyperbolicEquations 113 3.1 DerivationoftheBasicEquations . . . . . . . . . . . . 113 3.2 BoundaryandInitialConditions . . . . . . . . . . . . . 116 3.3 Other Boundary Value Problems: Longitudinal Vibra- tionsofaThinRod . . . . . . . . . . . . . . . . . . . . 121 3.4 TorsionalOscillationsofanElasticCylinder . . . . . . . 124 3.5 AcousticWaves . . . . . . . . . . . . . . . . . . . . . . 127 3.6 WavesinaShallowChannel . . . . . . . . . . . . . . . 132 3.7 ElectricalOscillationsinaCircuit . . . . . . . . . . . . 135 3.8 TravelingWaves: D’AlembertMethod . . . . . . . . . . 138 3.9 Semi-infinite String Oscillations and the Use of Sym- metryProperties . . . . . . . . . . . . . . . . . . . . . . 157 3.10 FiniteIntervals: TheFourierMethodforOne-Dimensional WaveEquations . . . . . . . . . . . . . . . . . . . . . . 180 3.11 GeneralizedFourierSolutions . . . . . . . . . . . . . . 211 3.12 EnergyoftheString . . . . . . . . . . . . . . . . . . . . 213 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 4 Two-DimensionalHyperbolicEquations 241 4.1 DerivationoftheEquationsofMotion . . . . . . . . . . 242 4.2 OscillationsofaRectangularMembrane . . . . . . . . . 247 4.3 TheFourierMethodAppliedtoSmallTransverseOscil- lationsofaCircularMembrane . . . . . . . . . . . . . . 277 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 5 One-DimensionalParabolicEquations 327 5.1 Physical Problems Described by Parabolic Equations: BoundaryValueProblems . . . . . . . . . . . . . . . . 327 5.2 The Principle of the Maximum, Correctness, and the GeneralizedSolution . . . . . . . . . . . . . . . . . . . 340 i i i i i i i i Contents ix 5.3 The Fourier Method of Separation of Variables for the HeatConductionEquation . . . . . . . . . . . . . . . . 344 5.4 HeatConductioninanInfiniteBar . . . . . . . . . . . . 383 5.5 HeatEquationforaSemi-infiniteBar . . . . . . . . . . 394 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 6 ParabolicEquationsforHigher-DimensionalProblems 419 6.1 HeatConductioninMorethanOneDimension . . . . . 419 6.2 HeatConductionwithinaFiniteRectangularDomain . . 430 6.3 HeatConductionwithinaCircularDomain . . . . . . . 460 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 7 EllipticEquations 489 7.1 EllipticPartialDifferentialEquationsandRelatedPhys- icalProblems . . . . . . . . . . . . . . . . . . . . . . . 489 7.2 The Dirichlet Boundary Value Problem for Laplace’s EquationinaRectangularDomain . . . . . . . . . . . . 508 7.3 Laplace’sandPoisson’sEquationsforTwo-Dimensional DomainswithCircularSymmetry . . . . . . . . . . . . 527 7.4 Laplace’sEquationinCylindricalCoordinates . . . . . . 561 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590 8 BesselFunctions 613 8.1 BoundaryValueProblemsLeadingtoBesselFunctions . 613 8.2 BesselFunctionsoftheFirstKind . . . . . . . . . . . . 620 8.3 PropertiesofBesselFunctionsoftheFirstKind: J (x) . 622 n 8.4 BesselFunctionsoftheSecondKind . . . . . . . . . . . 627 8.5 BesselFunctionsoftheThirdKind . . . . . . . . . . . . 629 8.6 ModifiedBesselFunctions . . . . . . . . . . . . . . . . 630 8.7 TheEffectofBoundariesonBesselFunctions . . . . . . 632 8.8 OrthogonalityandNormalizationofBesselFunctions . . 634 8.9 TheFourier-BesselSeries . . . . . . . . . . . . . . . . . 638 8.10 FurtherExamplesofFourier-BesselSeriesExpansions . 655 8.11 SphericalBesselFunctions . . . . . . . . . . . . . . . . 663 8.12 TheGammaFunction . . . . . . . . . . . . . . . . . . . 667 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 i i i i i i i i x Contents 9 LegendreFunctions 677 9.1 BoundaryValueProblemsLeadingtoLegendrePolyno- mials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 9.2 GeneratingFunctionforLegendrePolynomials . . . . . 686 9.3 RecurrenceRelations . . . . . . . . . . . . . . . . . . . 687 9.4 OrthogonalityofLegendrePolynomials . . . . . . . . . 689 9.5 TheMultipoleExpansioninElectrostatics . . . . . . . . 692 9.6 AssociatedLegendreFunctionsPm(x) . . . . . . . . . . 696 n 9.7 OrthogonalityandtheNormofAssociatedLegendreFunc- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 9.8 Fourier-LegendreSeriesinLegendrePolynomials . . . . 702 9.9 Fourier-Legendre Series in Associated Legendre Func- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709 9.10 Laplace’sEquationinSphericalCoordinatesandSpher- icalFunctions . . . . . . . . . . . . . . . . . . . . . . . 713 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 A EigenvaluesandEigenfunctionsoftheSturm-LiouvilleProb- lem 743 B Auxiliary Functions for Different Types of Boundary Con- ditions 747 C TheSturm-LiouvilleProblemandtheLaplaceEquation 751 D VectorCalculus 757 E HowtoUsetheSoftwareAssociatedwiththisBook 769 E.1 ProgramOverview . . . . . . . . . . . . . . . . . . . . 770 E.2 ExamplesUsingtheProgramTrigSeries . . . . . . . . . 773 E.3 ExamplesUsingtheProgramWaves . . . . . . . . . . . 781 E.4 ExamplesUsingtheProgramHeat . . . . . . . . . . . . 797 E.5 ExamplesUsingtheProgramLaplace . . . . . . . . . . 811 E.6 ExamplesUsingtheProgramFourierSeries . . . . . . . 822 Bibliography 831 Index 833 i i i i i i i i Introduction Thetopicsofthisbookarepartialdifferentialequations(PDEs)ofmathe- matical physics and boundary value problems, Fourier series, and special functions. This is the core content of many courses in the fields of engi- neering,physics,mathematics,andappliedmathematics. Thebook,alongwiththecompanionsoftware,representsaninnovative teachingandlearningprojectthatdoesnotexistinthecurrentliteraturein partialdifferentialequationsofmathematicalphysics. Thebookissignifi- cantlymoredetailedthanthetypicalintroductiontoPDE.Itcontainsmany examplesthatshowhowtosetupphysicalproblemsasmathematicalones; how to solve partial differential equations under different types of bound- ary conditions; how to work with special functions; and how to carry out aFourieranalysisusingthesefunctions. Thetopicsdiscussedinthisbook arepresentedinfull—notmerelywithbriefexplanationsandsolutionsof basicexamples. Thetextalsocontainsmanyphysicalapplications,which areimportantnotonlybecauseoftheirsignificanceinphysicsbutalsobe- cause they demonstrate how the same mathematical approaches may be usedfordifferentphysicalproblems. Thisfeatureprovidesthereaderwith waysofextendingthesemethodstootherproblemsintherealworld. The authorshavemanyyearsofexperienceinteachingbothphysicsandmath- ematicsandbelievethatthetextisareasonablecombinationofastringent mathematicalapproachandphysicalintuition. The features of the book allow the presentation of a large amount of material of very significant depth during a one-semester undergradu- ate or graduate course for physicists, mathematicians, or engineers. The xi i i i i i i i i xii Introduction book can also be used to teach a sequence of undergraduate and graduate courses. Thetextissubstantiallybroaderthanmostmathematicalphysics textbooksinPDEs,anaspectthatwillgreatlyaidinstructorsintheirselec- tionoftopicsforclassesofdifferentcapabilities. Numerousproblemsare presented, from fairly simple to interestingly complex—an attribute that allowsalecturertosuggestproblemsofdifferentlevelstomatchtheabil- ities of the students. Solutions to some of the more difficult problems are included;othersareleftforthereadertosolve. Thedetailedexplanationsandabundantexamples,alongwiththecom- panion software, also make this book useful for self-study, where it is important to illustrate all the steps of a solution and provide a tool for theextensionofmathematicalmethodstomorerealisticandsophisticated problems. In keeping with practices currently recommended by physics educationresearch, anumberofReadingExercisesarescatteredthrough- out the text. These exercises are designed to keep the reader engaged in the flow of arguments presented in the text and are particularly useful for self-study and self-evaluation. The reader is strongly encouraged to read the text with pencil and paper at hand, filling in the steps of the exercises while working through the text. The software provides a laboratory en- vironment that allows the user to generate and model different physical situations and learn by experimentation. From this standpoint, the book along with the software can also be used as a reference for students and professionalsalikeonPDEs,Fourierseries,andspecialfunctions. The companion problem-solving software is a very important and in- trinsic feature of the book and represents an approach to mathematical physics that integrates text, computational environment, and visualiza- tion. In typical undergraduate and even graduate courses in mathematical physics,studentsarelimitedtoasmallnumberofsimpleproblemsdueto timeconstraints, whichprohibitthestudyofavastnumberofinteresting, butmorecomplex,applications. Thesoftwareaccompanyingthistextnot onlyprovidesvisualizationandanimationofvariousclassesofmathemat- icalproblems,butalsoguidesthereaderandshowsthesequenceofallthe steps needed to solve the problem. Once the problem is solved, the soft- wareallowsadeeperinvestigationoftheproblem—aninvestigationofthe dependenceofthesolutionontheparameters,theaccuracyofthesolution, thespeedofaseriesconvergence,andrelatedorsimilarquestions. Italso allows the reader to experiment with a much larger number of problems thanaretypicallytreatedinastandardcourse. i i i i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.