ebook img

Mathematical Methods in Electro-Magneto-Elasticity PDF

538 Pages·2007·12.806 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Methods in Electro-Magneto-Elasticity

Lecture Notes in Applied and Computational Mechanics Volume 32 SeriesEditors Prof.Dr.-Ing.FriedrichPfeiffer Prof.Dr.-Ing.PeterWriggers LectureNotesinAppliedandComputationalMechanics EditedbyF.PfeifferandP.Wriggers Furthervolumesofthisseriesfoundonourhomepage:springer.com Vol.32:Bardzokas,D.I.;Filshtinsky,M.L.;Filshtinsky,L.A.(Eds.) Trucks,Buses,andTrains MathematicalMethods 567p.2004[978-3-540-22088-6] inElectro-Magneto-Elasticity Vol.18:Leine,R.I.,Nijmeijer,H. 530p.2007[978-3-540-71030-1] DynamicsandBifurcations Vol.31:Lehmann,L.(Ed.) ofNon-SmoothMechanicalSystems WavePropagationinInfiniteDomains 236p.2004[978-3-540-21987-3] 186p.2007[978-3-540-71108-7] Vol.17:Hurtado,J.E. Vol.30:Stupkiewicz,S.(Ed.) StructuralReliability:StatisticalLearningPerspectives MicromechanicsofContactandInterphaseLayers 257p.2004[978-3-540-21963-7] 206p.2006[978-3-540-49716-5] Vol.29:Schanz,M.;Steinbach,O.(Eds.) Vol.16:KienzlerR.,AltenbachH.,OttI.(Eds.) TheoriesofPlatesandShells: BoundaryElementAnalysis 571p.2006[978-3-540-47465-4] CriticalReviewandNewApplications 238p.2004[978-3-540-20997-3] Vol.28:Helmig,R.;Mielke,A.;Wohlmuth,B.I.(Eds.) MultifieldProblemsinSolidandFluidMechanics Vol.15:Dyszlewicz,J. 571p.2006[978-3-540-34959-4] MicropolarTheoryofElasticity 356p.2004[978-3-540-41835-1] Vol.27:WriggersP.,NackenhorstU.(Eds.) AnalysisandSimulationofContactProblems Vol.14:FrmondM.,MaceriF.(Eds.) 395p.2006[978-3-540-31760-9] NovelApproachesinCivilEngineering Vol.26:Nowacki,J.P. 400p.2003[978-3-540-41836-8] StaticandDynamicCoupledFieldsinBodies Vol.13:KolymbasD.(Eds.) withPiezoeffectsorPolarizationGradient AdvancedMathematicalandComputational 209p.2006[978-3-540-31668-8] Geomechanics Vol.25:ChenC.-N. 315p.2003[978-3-540-40547-4] DiscreteElementAnalysisMethods Vol.12:WendlandW.,EfendievM.(Eds.) ofGenericDifferentialQuadratures AnalysisandSimulationofMultifieldProblems 282p.2006[978-3-540-28947-0] 381p.2003[978-3-540-00696-1] Vol.24:Schenk,C.A.,Schuºller.G UncertaintyAssessmentofLarge Vol.11:HutterK.,KirchnerN.(Eds.) FiniteElementSystems DynamicResponseofGranularandPorousMaterials 165p.2006[978-3-540-25343-3] underLargeandCatastrophicDeformations 426p.2003[978-3-540-00849-1] Vol.23:FrmondM.,MaceriF.(Eds.) MechanicalModellingandComputationalIssues Vol.10:HutterK.,BaaserH.(Eds.) inCivilEngineering DeformationandFailureinMetallicMaterials 400p.2005[978-3-540-25567-3] 409p.2003[978-3-540-00848-4] Vol.22:ChangC.H. Vol.9:SkrzypekJ.,GanczarskiA.W.(Eds.) MechanicsofElasticStructureswithInclinedMembers: AnisotropicBehaviourofDamagedMaterials AnalysisofVibration,BucklingandBendingofX-Braced 366p.2003[978-3-540-00437-0] FramesandConicalShells 190p.2004[978-3-540-24384-7] Vol.8:Kowalski,S.J. ThermomechanicsofDryingProcesses Vol.21:HinkelmannR. 365p.2003[978-3-540-00412-7] EfficientNumericalMethodsandInformation-Processing TechniquesforModelingHydro-andEnvironmental Vol.7:Shlyannikov,V.N. Systems Elastic-PlasticMixed-ModeFractureCriteria 305p.2005[978-3-540-24146-1] andParameters 246p.2002[978-3-540-44316-2] Vol.20:ZohdiT.I.,WriggersP. IntroductiontoComputationalMicromechanics Vol.6:PoppK.,SchiehlenW.(Eds.) 196p.2005[978-3-540-22820-2] SystemDynamicsandLong-TermBehaviour Vol.19:McCallenR.,BrowandF.,RossJ.(Eds.) ofRailwayVehicles,TrackandSubgrade TheAerodynamicsofHeavyVehicles: 488p.2002[978-3-540-43892-2] Mathematical Methods in Electro-Magneto-Elasticity Demosthenis I. Bardzokas • Michael L. Filshtinsky • Leonid A. Filshtinsky Authors D.I.Bardzokas NationalTechnicalUniversityofAthens SchoolofAppliedMathematics andPhysicalSciences DepartmentofMechanicsLaboratory ofTestingandMaterials Athens,Hellas,Greece L.A.Filshtinsky Dept.ofMathematicalPhysicsSumy StateUniversity Sumy,Ukraina M.L.Filshtinsky† LibraryofCongressControlNumber:2007923590 ISSN 1613-7736 ISBN 978-3-540-71030-1 SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerial isconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmorinanyotherways,andstorageindatabanks.Duplicationofthis publicationorpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawof September9,1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. ViolationsareliableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:2)c Springer-VerlagBerlinHeidelberg2007 Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply, even in the absence ofa specific statement, that such names areexempt from the relevant protectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:Künkel&Lopka,Heidelberg Typesettingbytheauthors Production:IntegraSoftwareServicesPvt.Ltd.,Pondicherry,India Printedonacid-freepaper SPIN:11944416 45/3100/Integra 5 4 3 2 1 0 This book is dedicated to Michael Filshtinsky who had always a vision to create. This creation was expressed both in science and music. Preface Thescienceofmechanicsofcoupledfieldsisadynamicresearcharea,studying in a unified way continuum mechanics, heat transfer phenomena and electro- magnetism, i.e. branches of science that are usually studied separately. Foramorerigorousandaccuratedescriptionofthe influence ofstatic and dynamic loadings, high temperatures and strong electromagnetic fields on elastic media and constructions we need a single approach, i.e. one that has thepotentialto integratealltheabovementionedphysicalfields.Theinvesti- gationofthemechanicsofstressed-deformedmediasubjecttocoupledfieldsis one of the most important tasks in today’s material science with major tech- nological importance. Our scope is the rigorous qualitative and quantitative analysis of the stressed-deformed states of materials and constructions and their physical and mechanicalproperties within the phenomenologicaltheory of electro-magneto-thermo elasticity. For that reason we derive the constitu- tive equations that govern the behavior of the problem under study, we pose the appropriate boundary conditions and finally we present and apply the appropriate mathematical methods for their solution. General relations of the mechanics of deformed bodies interchanging with electromagnetic field are used and special attention is paid to the construc- tion of the theory of shells and plates made from piezoelectric materials. We present in detail art of the state mathematical methods for the solution of a broad class of two-dimensional problem of electroelasticity for multicon- nected bodies. We also examine several static and dynamic problems for piecewise-homogeneouspiezoelectricplates,weakenedbycracksandopenings. We mostly consider questions connected with the application of the method of boundary integral equations for the investigation of the problem of de- formation of electroelastic waves on heterogeneities of various types. Special emphasisisgiveninthedefinitionofstrengthandbreakdowncharacteristicsof bodies with defects. We state and solve some inverse problems of electroelas- ticity about optimal, in some sense, equations by parameters of strength and breakdown. VIII Preface Theinterplayofcoupledphysicalfieldsinanisotropicmediaintroducesad- ditionaldifficultiesintotheanalysisofboundaryproblemsofelectro-magneto- elasticity. The boundary conditions are not usually separated, which leads to the necessity ofconsiderationof compoundboundaryproblemsof mathemat- ical physics. We believe that this monograph provides the theoretical background and the tools for the systematic analysis of electromegneto-elastic media with a broad spectrum of applications. This book is the condensation of a long scientific collaboration of the authors despite the fact that Dr. M. L. Filshtinsky, passed away unexpect- edly 3 years ago. Michael L. Filshitinsky was born in 1961 in the town of Novosibirsk. In 1989 he received his PhD in Mathematical Physics at the Mechanic-Mathematical Faculty of the State University of Moscow (Lomonosov). His Thesis was entitled: “Solution of two-dimensional dynami- cal problems of elasticity and electroelasticity for cracked bodies”. The most characteristic aspect of the work of M.L. Filshtinsky was the combination of his natural talent and his hard work, for solving a vast number of novel and real-worldproblems.Anotherinterestingcomponentofhispersonalitywashis interestinmusiccomposition.M.L.Filshtinskyandushavepublishedtogether many articles in international scientific journals and congress proceedings as well as 5 monographs in Russian language [[190, 254]–[256]] The present work is a small component of the knowledge of the great SovietSchoolin the areaofCoupledFields Mechanicsandispartofaneffort to bring out the rich Russian literature in the area. At this point Prof. D.I. Bardzokas would also like to thank, with all his heart,hisassociate,friendandstudentGeorgeI.Sfyrisaswellashiscolleague and good friend Constantinos I. Siettos for the help they provided in writing this monograph. Without their valuable help the publication of this work would be impossible. This book is for the specialists in Continuous Mechanics, Acoustics and Defectoscopy, and also for advanced undergraduate and graduate –level stu- dents in Applied Mathematics, Physics, Engineering Mechanics and Physical Sciences. D.I. Bardzokas Professor NTUA, Section of Mechanics, Greece L.A. Filshtinsky Professor of Sumy State Univerisity, Ukraine Contents Introduction................................................... 1 1 Physical Fields in Solid Bodies............................. 9 1.1 Heat Field. Heat Conduction Equation in Solid Bodies ....... 9 1.1.1 Heat Field........................................ 9 1.1.2 Equilibrium Heat Equation ......................... 9 1.1.3 Heat Conduction Equation ......................... 11 1.1.4 Boundary Conditions .............................. 12 1.2 Electromagnetic Fields. Maxwell’s Equations................ 13 1.2.1 The Laws of Electrodynamics in Integral Forms ....... 13 1.2.2 Maxwell’s Equations in Differential Forms ............ 15 1.2.3 Magnetization .................................... 17 1.2.4 Electric Polarization ............................... 18 1.2.5 The Balance Equation of the Electromagnetic Field’s Energy. Umov-Poynting Vector...................... 18 1.2.6 Vector and Scalar Potentials of Electromagnetic Field.. 20 1.2.7 Boundary Conditions .............................. 21 1.2.8 Stationary Electromagnetic Field. Electrostatic Approximation.................................... 23 1.3 Stresses and Deformations. Hooke’s Law.................... 24 1.3.1 State of Stress .................................... 24 1.3.2 Equations of Equilibrium and Motion. Symmetry of Stress Tensors .................................. 26 1.3.3 Deformed State ................................... 28 1.3.4 Equations of Compatibility ......................... 30 1.3.5 Elastic Body...................................... 31 1.3.6 Hooke’s Law. Stress Potential....................... 32 1.3.7 Matrix Designations ............................... 34 1.4 Singular Physical Fields .................................. 35 1.4.1 Analysis of the Singularities of Physical Fields ........ 36 1.4.2 The Electric Field of a Charged Conductive Disk ...... 39 X Contents 1.4.3 Mathematical Idealization of Cracks in an Elastic Body................................. 44 1.4.4 Criterion of Fracture of a Body with a Crack ......... 56 2 Basic Equations of the Linear Electroelasticity............. 63 2.1 The Linear Theory of the Piezoelectricity................... 63 2.2 Equations of State for Piezoelectric Ceramics ............... 70 2.3 Two-Dimensional Problems of Electroelasticity.............. 72 2.4 Boundary Conditions .................................... 75 2.5 Mechanics of Fracture of Piezoelectrics ..................... 78 3 Static Problems of Electroelasticity for Bimorphs with Stress Concentrators ................... 85 3.1 Complex Representations of Solutions in Two-Dimensions .... 85 3.2 A Bimorph with Cracks in One of the Pair Components ...... 91 3.3 Bimorph with Openings in One of the Pair Components......100 3.4 A Composite Plate with a Crack Crossing the Interphase .....106 3.5 A Composite Plate with an Opening Crossing the Interphase..112 3.6 Green’s Function for a Composite Plate with an Interphase Crack.................................117 3.7 A Case of an Inner Crack Reaching the Interphase...........125 4 Diffraction of a Shear Wave................................129 4.1 An Anisotropic Space ....................................129 4.2 A Piezoceramic Space....................................138 4.3 A Piezoceramic Halfspace. Free Boundary and Rigid Fixture Problems...............................................147 4.4 A Halfspace with a Crack Reaching the Boundary ...........156 4.5 Harmonic Excitation of a Halfspace by External Sources......158 4.6 Arbitrary with Time Excitation of a Halfspace ..............162 4.7 A Layer ................................................167 4.8 A Halflayer.Various Variants of Boundary Conditions........174 5 Scattering of a Shear Wave ................................181 5.1 A Space and a Half-Space with Tunnel Openings ............181 5.2 Impulse Excitation of a Half-Space with Openings ...........190 5.3 Stress Concentration in a Layer with Openings..............193 5.4 A Halflayer with Openings ...............................196 5.5 A Space and a Halfspace with Cylindrical Inclusions. Integrodifferential Equations of a Boundary Problem.........199 5.6 Interaction of Openings and Cracks in a Space ..............207 5.7 Fundamental Solution for a Composite Anisotropic Space.....216 5.8 An Anisotropic Bimorph with Tunnel Openings .............223 Contents XI 6 Mixed Dynamic Problems of Electroelasticity for Piezoelectric Bodies with Surface Electrodes ...........229 6.1 An Unbounded Medium with a Tunnel Opening. Direct and Inverse Piezoelectric Effect............................229 6.2 Interaction of Two Openings in an Unbounded Medium ......237 6.3 Excitation of a Medium with an Opening by an Electric Impulse ...................................243 6.4 Excitation of Shear Waves in an Infinite Cylinder with an Arbitrary System of Electrodes ....................245 6.5 A Hollow Cylinder.......................................251 6.6 A Halfspace with Tunnel Openings ........................255 6.7 A Layer ................................................267 6.8 Interaction of a Partially Electrodized Opening and Crack ....280 6.9 An Opening Strengthened by a Rigid Stringer...............290 7 Harmonic Oscillations of Continuous Piezoceramic Cylinders with Inner Defects (Antiplane Deformation) ....301 7.1 A Cylinder Weakened by Tunnel Cracks (Direct Piezoeffect) ..301 7.2 A Cylinder with a Thin Rigid Inclusion ....................309 7.3 A Cylinder with a Crack Excited by a System of Electrodes...317 7.4 A Cylinder With an Inclusion Excited by a System of Electrodes............................................321 8 Electroacoustic Waves in Piezoceramic Media with Defects (Plane Deformation) .........................333 8.1 Waves in a Homogeneous Medium .........................333 8.2 General Representations of Coupled Fields in a Medium of the Hexagonal Class of Symmetry .......................338 8.3 An Unbounded Medium with Tunnel Cracks. Integral Representations of Complex Potentials .....................342 8.4 Integrodifferential Equations of a Boundary Problem................................................344 8.5 Reducing to a Case of an Isotropic Medium.................348 8.6 Effect of Mutual Hardening of Cracks ......................353 8.7 An Inertial Effect in the Process of Impact Effect on a Crack .............................................356 8.8 A Matrix of Fundamental Solutions of Two-Dimensional Equations of Electroelasticity .............................358 8.9 An Unbounded Medium with Tunnel Openings..............365 8.10 Oscillation of a Cylinder Under the Influence of Pulsating Pressure ....................................371 9 Magnetoelasticity..........................................373 9.1 Magnetic Field and its Properties..........................373 9.1.1 Action of the Magnetic Field on the Moving Electric Charges...................................374

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.