ebook img

Mathematical Methods for Engineers and Scientists 1: Complex Analysis and Linear Algebra PDF

498 Pages·2022·6.369 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Methods for Engineers and Scientists 1: Complex Analysis and Linear Algebra

Kwong-Tin Tang Mathematical Methods for Engineers and Scientists 1 Complex Analysis and Linear Algebra Second Edition Mathematical Methods for Engineers and Scientists 1 Kwong-Tin Tang Mathematical Methods for Engineers and Scientists 1 Complex Analysis and Linear Algebra Second Edition Kwong-TinTang DepartmentofPhysics PacificLutheranUniversity Tacoma,WA,USA ISBN 978-3-031-05677-2 ISBN 978-3-031-05678-9 (eBook) https://doi.org/10.1007/978-3-031-05678-9 1stedition:©Springer-VerlagBerlinHeidelberg2007 2ndedition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer NatureSwitzerlandAG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Inlovingmemoryofmyparents Preface to Second Edition Therearetwomorechaptersinthisedition. Theoneonconformalmappingisbyreaders’request.Hopefullythismeansthat thesubjectisimportantandmyleisurelyapproachisappealing.Imustconfessthat Itaughtthesematerialsonlyoncebefore.Theyaremostlymypersonalnotes. Therewerethreechaptersondeterminantsandmatrices.Togethertheyformthe bodyoflinearalgebra.However,Ifounditeasytogetlostinthedetailsofcalculations. So I wrote a summary of the computation aspects and gave a simple geometrical description of linear algebra in terms of vector space. These are the contents of Chap. 5. Because of the time line they were written, there are some overlaps with the following chapters. Since pedagogically a certain amount of repetition is not necessarilybad,Ididnotremovethem. Iwanttothankallthosewhopointedoutthemistakesofthefirstedition.Especially IwanttothankmycolleaguesProfessorRichardLouiewhogavemealistoferrors, and Prof. Chang-li Yiu who wrote part of the vector space. I must also thank my wife,Pauline,whohastakenupallhousechores.OnceagainIwanttothankMattew Hackerforhishelpwithcomputerproblems. May this set of books be an acceptable offering in the eyes of my Lord Jesus Christ. Tacoma,Washington Kwong-TinTang March2022 vii Preface to the First Edition For thirty-some years, I have taught two “Mathematical Physics” courses. One of themwaspreviouslynamed“EngineeringAnalysis”.Thereareseveraltextbooksof unquestionablemeritforsuchcourses,butIcouldnotfindonethatfittedourneeds. Itseemedtomethatstudentsmighthaveaneasiertimeifsomechangesweremade inthesebooks.Iendedupusingclassnotes.ActuallyIfeltthesameaboutmyown notes,sotheygotchangedagainandagain.Throughouttheyears,manystudentsand colleagues haveurgedmetopublishthem.Iresisteduntilnow,becausethetopics were not new and I was not sure that my way of presenting them was really that muchbetterthanothers.Inrecentyears,someformerstudentscamebacktotellme thattheystillfoundmynotesusefulandlookedatthemfromtimetotime.Thefact thattheyalwayssingledoutthesecourses,amongmanyothersIhavetaught,made methinkthatbesidesbeingkind,theymightevenmeanit.Perhapsitisworthwhile tosharethesenoteswithawideraudience. It took far more work than expected to transcribe the lecture notes into printed pages. The notes were written in an abbreviated way without much explanation betweenanytwoequations,becauseIwassupposedtosupplythemissinglinksin person.HowmuchdetailIwouldgointodependedonthereactionofthestudents. Nowwithouttheminfrontofme,Ihadtodecidetheappropriateamountofderivation tobeincluded.Ichosetoerronthesideoftoomuchdetailratherthantoolittle.As aresult,thederivationdoesnotlookveryelegant,butIalsohopeitdoesnotleave anygapinstudents’comprehension. PreciselystatedandelegantlyprovedtheoremslookedgreattomewhenIwasa young faculty member. But in later years, I found that elegance in the eyes of the teachermightbestumblingblocksforstudents.NowIamconvincedthatbeforethe student can use a mathematical theorem with confidence, he must first develop an intuitivefeeling.Themosteffectivewaytodothatistofollowasufficientnumber ofexamples. Thisbookiswrittenforstudentswhowanttolearnbutneedafirmhand-holding.I hopetheywillfindthebookreadableandeasytolearnfrom.Learning,asalways,has tobedonebythestudentherselforhimself.Noonecanacquiremathematicalskill withoutdoingproblems,themorethebetter.However,realisticallystudentshavea ix x PrefacetotheFirstEdition finiteamountoftime.Theywillbeoverwhelmedifproblemsaretoonumerous,and frustratedifproblemsaretoodifficult.Acommonpracticeintextbooksistolistalarge numberofproblemsandlettheinstructortochooseafewforassignments.Itseems to me that is not a confidence building strategy. A self-learning person would not knowwhattochoose.Thereforeamoderatenumberofnotoverlydifficultproblems, with answers, are selected at the end of each chapter. Hopefully after the student hassuccessfullysolvedallofthem,hewillbeencouragedtoseekmorechallenging ones.Thereareplentyofproblemsinotherbooks.Ofcourse,aninstructorcanalways assignmoreproblemsatlevelssuitabletotheclass. Oncertaintopics,Iwentfartherthanmostothersimilarbooks,notinthesenseof esotericsophistication,butinmakingsurethatthestudentcancarryouttheactual calculation.Forexample,thediagonalizationofadegenerateHermitianmatrixisof considerableimportanceinmanyfields.Yettomakeitclearinasuccinctwayisnot easy.Iusedseveralpagestogiveadetailedexplanationofaspecificexample. Professor I.I. Rabi used to say “All textbooks are written with the principle of least astonishment”. Well, there is a good reason for that. After all, textbooks are supposedtoexplainawaythemysteriesandmaketheprofoundobvious.Thisbook isnoexception.Nevertheless,Istillhopethereaderwillfindsomethinginthisbook exciting. This volume consists of three chapters on complex analysis and three chapters on theory of matrices. In subsequent volumes, we will discuss vector and tensor analysis, ordinary differential equations and Laplace transforms, Fourier analysis andpartialdifferentialequations.Studentsaresupposedtohavealreadycompleted twoorthreesemestersofcalculusandayearofcollegephysics. This book is dedicated to my students. I want to thank my A students and B students,theirdiligenceandenthusiasmhavemadeteachingenjoyableandworth- while.IwanttothankmyCstudentsandDstudents,theirdifficultiesandmistakes mademesearchforbetterexplanations. IwanttothankBradOrawfordrawingmanyfiguresinthisbook,andMatthew Hackerforhelpingmetotypesetthemanuscript. IwanttoexpressmydeepestgratitudetoProfessorS.H.Patil,IndianInstituteof Technology,Bombay.Hehasreadtheentiremanuscriptandprovidedmanyexcellent suggestions. He has also checked the equations and the problems and corrected numerouserrors.Withouthishelpandencouragement,Idoubtthereisthisbook. Theresponsibilityforremainingerrorsis,ofcourse,entirelymine.Iwillgreatly appreciateiftheyarebroughttomyattention. Tacoma,Washington K.TTang October2005 Contents PartI ComplexAnalysis 1 ComplexNumbers ............................................. 3 1.1 OurNumberSystem ........................................ 3 1.1.1 AdditionandMultiplicationofIntegers ................. 4 1.1.2 InverseOperations ................................... 5 1.1.3 NegativeNumbers ................................... 6 1.1.4 FractionalNumbers .................................. 7 1.1.5 IrrationalNumbers ................................... 8 1.1.6 ImaginaryNumbers .................................. 9 1.2 Logarithm ................................................. 13 1.2.1 Napier’sIdeaofLogarithm ............................ 13 1.2.2 Briggs’CommonLogarithm ........................... 15 1.3 APeculiarNumberCallede ................................. 18 1.3.1 TheUniquePropertyofe ............................. 18 1.3.2 TheNaturalLogarithm ............................... 19 1.3.3 ApproximateValueofe ............................... 21 1.4 TheExponentialFunctionasanInfiniteSeries .................. 22 1.4.1 CompoundInterest ................................... 22 1.4.2 TheLimitingProcessRepresentinge ................... 24 1.4.3 TheExponentialFunctionex .......................... 24 1.5 UnificationofAlgebraandGeometry .......................... 25 1.5.1 TheRemarkableEulerFormula ........................ 25 1.5.2 TheComplexPlane .................................. 26 1.6 PolarFormofComplexNumbers ............................. 29 1.6.1 PowersandRootsofComplexNumbers ................. 31 1.6.2 TrigonometryandComplexNumbers ................... 34 1.6.3 GeometryandComplexNumbers ...................... 41 1.7 ElementaryFunctionsofComplexVariable .................... 48 1.7.1 ExponentialandTrigonometricFunctionsofz ........... 48 1.7.2 HyperbolicFunctionsofz ............................. 50 xi xii Contents 1.7.3 LogarithmandGeneralPowerofz ..................... 52 1.7.4 InverseTrigonomericandHyperbolicFunctions .......... 58 Exercises ....................................................... 61 2 ComplexFunctions ............................................. 65 2.1 AnalyticFunctions ......................................... 65 2.1.1 ComplexFunctionasMappingOperation ............... 66 2.1.2 DifferentiationofaComplexFunction .................. 67 2.1.3 Cauchy-RiemannConditions .......................... 69 2.1.4 Cauchy-RiemannEquationsinPolarCoordinates ......... 72 2.1.5 AnalyticFunctionasaFunctionofzAlone .............. 74 2.1.6 AnalyticFunctionandLaplace’sEquation ............... 79 2.2 ComplexIntegration ........................................ 87 2.2.1 LineIntegralofaComplexFunction .................... 87 2.2.2 ParametricFormofComplexLineIntegral .............. 89 2.3 Cauchy’sIntegralTheorem .................................. 92 2.3.1 Green’sLemma ...................................... 92 2.3.2 Cauchy-GoursatTheorem ............................. 94 2.3.3 FundamentalTheoremofCalculus ..................... 96 2.4 ConsequencesofCauchy’sTheorem .......................... 99 2.4.1 PrincipleofDeformationofContours ................... 99 2.4.2 TheCauchyIntegralFormula .......................... 100 2.4.3 DerivativesofAnalyticFunction ....................... 102 Exercises ....................................................... 109 3 ComplexSeriesandTheoryofResidues .......................... 115 3.1 ABasicGeometricSeries .................................... 115 3.2 TaylorSeries ............................................... 116 3.2.1 TheComplexTaylorSeries ............................ 116 3.2.2 ConvergenceofTaylorSeries .......................... 117 3.2.3 AnalyticContinuation ................................ 119 3.2.4 UniquenessofTaylorSeries ........................... 121 3.3 LaurentSeries ............................................. 125 3.3.1 UniquenessofLaurentSeries .......................... 129 3.4 TheoryofResidues ......................................... 136 3.4.1 ZerosandPoles ...................................... 136 3.4.2 DefinitionoftheResidue .............................. 137 3.4.3 MethodsofFindingResidues .......................... 138 3.4.4 Cauchy’sResidueTheorem ............................ 142 3.4.5 SecondResidueTheorem ............................. 143 3.5 EvaluationofRealIntegralswithResidues ..................... 150 3.5.1 IntegralsofTrigonometricFunctions .................... 150 3.5.2 Improper Integrals I: Closing the Contour withaSemicircleatInfinity ........................... 154 3.5.3 FourierIntegralandJordan’sLemma ................... 157

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.