ebook img

Mathematical logic: Foundations for information science PDF

274 Pages·2010·0.965 MB·English
by  Li W.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical logic: Foundations for information science

Progress in Computer Science and Applied Logic Volume 25 Editor: John C. Cherniavsky, National Science Foundation Associate Editors Robert Constable, Cornell University Jean Gallier, University of Pennsylvania Richard Platek, Cornell University Richard Statman, Carnegie-Mellon University Mathematical Logic Foundations for Information Science Wei Li Birkhäuser Basel · Boston · Berlin Author: Wei Li State Key Laboratory of Software Development Environment Beihang University 37 Xueyuan Road, Haidian District Beijing 100191 China e-mail: [email protected] 2000 Mathematics Subject Classification: 83C05, 83C35, 58J35, 58J45, 58J05, 53C80 Library of Congress Control Number: 2009940118 Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de ISBN 978-3-7643-9976-4 Birkhäuser Verlag AG, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustra- tions, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2010 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF∞ Printed in Germany English version based on, 数理逻辑:基本原理与形式演算 (Mathematical Logic – Basic Principles and Formal Calculus), 978-7-03020096-9, Science Press, Beijing, China, 2007. ISBN 978-3-7643-9976-4 e-ISBN 978-3-7643-9977-1 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Contents Preface ix Chapter1 SyntaxofFirst-OrderLanguages 1 1.1 Symbolsoffirst-orderlanguages . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Logicalformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Freevariablesandsubstitutions . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Go¨deltermsofformulas . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Proofbystructuralinduction . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter2 ModelsofFirst-OrderLanguages 19 2.1 Domainsandinterpretations . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Assignmentsandmodels . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Semanticsofterms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Semanticsoflogicalconnectivesymbols . . . . . . . . . . . . . . . . . . 25 2.5 Semanticsofformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6 Satisfiabilityandvalidity . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Validformulaswith↔ . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Hintikkaset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9 Herbrandmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.10 Herbrandmodelwithvariables . . . . . . . . . . . . . . . . . . . . . . . 38 2.11 Substitutionlemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.12 Theoremofisomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Chapter3 FormalInferenceSystems 45 3.1 Ginferencesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Inferencetrees,prooftreesandprovablesequents . . . . . . . . . . . . . 52 3.3 SoundnessoftheGinferencesystem . . . . . . . . . . . . . . . . . . . . 57 3.4 Compactnessandconsistency. . . . . . . . . . . . . . . . . . . . . . . . 61 3.5 CompletenessoftheGinferencesystem . . . . . . . . . . . . . . . . . . 63 3.6 Somecommonlyusedinferencerules . . . . . . . . . . . . . . . . . . . 66 3.7 Prooftheoryandmodeltheory . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter4 Computability&Representability 71 4.1 Formaltheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2 Elementaryarithmetictheory . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3 P-kernelonN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.4 Church-Turingthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5 Problemofrepresentability . . . . . . . . . . . . . . . . . . . . . . . . . 81 vi Contents 4.6 StatesofP-kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.7 OperationalcalculusofP-kernel . . . . . . . . . . . . . . . . . . . . . . 84 4.8 Representationsofstatements. . . . . . . . . . . . . . . . . . . . . . . . 86 4.9 Representabilitytheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Chapter5 Go¨delTheorems 97 5.1 Self-referentialproposition . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 Decidablesets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3 FixedpointequationinΠ . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.4 Go¨del’sincompletenesstheorem . . . . . . . . . . . . . . . . . . . . . . 107 5.5 Go¨del’sconsistencytheorem . . . . . . . . . . . . . . . . . . . . . . . . 109 5.6 Haltingproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Chapter6 SequencesofFormalTheories 117 6.1 Twoexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.2 Sequencesofformaltheories . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3 Proschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4 Resolventsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.5 Defaultexpansionsequences . . . . . . . . . . . . . . . . . . . . . . . . 130 6.6 Forcingsequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.7 Discussionsonproschemes . . . . . . . . . . . . . . . . . . . . . . . . . 136 Chapter7 RevisionCalculus 139 7.1 Necessaryantecedentsofformalconsequences . . . . . . . . . . . . . . 140 7.2 Newconjecturesandnewaxioms . . . . . . . . . . . . . . . . . . . . . . 143 7.3 Refutationbyfactsandmaximalcontraction . . . . . . . . . . . . . . . . 144 7.4 R-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.5 Someexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.6 Specialtheoryofrelativity . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.7 Darwin’stheoryofevolution . . . . . . . . . . . . . . . . . . . . . . . . 156 7.8 ReachabilityofR-calculus . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.9 SoundnessandcompletenessofR-calculus . . . . . . . . . . . . . . . . 163 7.10 Basictheoremoftesting . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Chapter8 VersionSequences 169 8.1 Versionsandversionsequences . . . . . . . . . . . . . . . . . . . . . . . 171 8.2 TheProschemeOPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 8.3 Convergenceoftheproscheme . . . . . . . . . . . . . . . . . . . . . . . 176 8.4 Commutativityoftheproscheme . . . . . . . . . . . . . . . . . . . . . . 178 8.5 Independenceoftheproscheme. . . . . . . . . . . . . . . . . . . . . . . 180 8.6 Reliableproschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Contents vii Chapter9 InductiveInference 187 9.1 Groundterms,basicsentences,andbasicinstances . . . . . . . . . . . . 190 9.2 InductiveinferencesystemA . . . . . . . . . . . . . . . . . . . . . . . . 192 9.3 Inductiveversionsandinductiveprocess . . . . . . . . . . . . . . . . . . 197 9.4 TheProschemeGUINA . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.5 ConvergenceoftheproschemeGUINA . . . . . . . . . . . . . . . . . . . 204 9.6 CommutativityoftheproschemeGUINA . . . . . . . . . . . . . . . . . . 206 9.7 IndependenceoftheproschemeGUINA . . . . . . . . . . . . . . . . . . . 207 Chapter10 WorkflowsforScientificDiscovery 209 10.1 Threelanguageenvironments . . . . . . . . . . . . . . . . . . . . . . . . 209 10.2 Basicprinciplesofthemeta-languageenvironment . . . . . . . . . . . . 213 10.3 Axiomatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 10.4 Formalmethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 10.5 Workflowofscientificresearch . . . . . . . . . . . . . . . . . . . . . . . 225 Appendix1 SetsandMaps 229 Appendix2 SubstitutionLemmaandItsProof 233 Appendix3 ProofoftheRepresentabilityTheorem 237 A3.1 RepresentationofthewhilestatementinΠ . . . . . . . . . . . . . . . . 237 A3.2 RepresentabilityoftheP-procedurebody . . . . . . . . . . . . . . . . . 244 Bibliography 253 Index 257 Preface Classicalmathematicallogicisconsideredtobeanimportantcomponentofthefounda- tion of mathematics. It is the study of mathematical methods, especially the properties of axiom systems and the structure of proofs. The core of mathematical logic consists ofdefiningthesyntaxoffirst-orderlanguages,studyingtheirmodels,formalizinglogical inferenceandprovingitssoundnessandcompleteness.Italsocoversthetheoryofcom- putabilityandGo¨del’sincompletenesstheorems.Thisprocessofabstractionstartedinthe late19thCenturyandwasessentiallycompletedby1950. In 1990, I began to give courses on mathematical logic. This teaching experience mademerealizethat,althoughdeductivelogicwaswellanalyzed,theprocessofaxioma- tizationhadnotbeenstudiedindepth.Severalyearslater,Iorganizedaseriesofseminars asanensuingeffort.Thefirstfiveseminarscoveredclassicalmathematicallogicandthe restwereapreliminaryoutlineoftheformaltheoryofaxiomatization. As my understanding of mathematical logic became deeper, my desire to analyze andformalizetheprocessofaxiomatizationbecamemoreintense.Ialsosawtheinfluence ofmathematicallogicininformationtechnologyandscientificresearch.Thisinspiredme towriteabookforstudentslivingintheinformationsociety. The computer was invented in the 1940’s and high-level programming languages weredefinedandimplementedsoonafterwards.Computersciencehasdevelopedrapidly sincethen.Thisexertedaprofoundinfluenceonmathematicallogic,becauseitsconcepts and theories were extensively applied. However, the development of computer science has,inturn,madenewdemandsonmathematicallogic,whichhavebeenthefocusofmy research and the motivation for this book. This motivation is guided by two considera- tions. Firstly,mathematicallogicwasoriginallyageneraltheoryaboutaxiomsystemsand proofsinmathematics,butnow,itsconceptsandtheorieshavebeenadoptedbycomputer scienceandhaveplayedaprincipalguidingroleinthedesignandimplementationofboth softwareandhardware. For example, the method of structural induction was invented to define the gram- mar of first-order languages, but it is now used to define programming languages. This suggeststhatthestudyofmathematicallogiccanbeappliedtomanyareasofcomputer science. AnotherexampleisgivenbyPeano’stheoryofarithmetic.Thisisaformaltheory inafirst-orderlanguage,whilethenaturalnumbersystemisamodelofthattheory.The distinction is essential in mathematical logic, because it is necessary in order to prove importanttheoremssuchasthoseofGo¨del.However,manypeopleoutsidethisfieldfind ithardtoseetheutilityofmakingthisdistinction. But in computer science, it is vital to differentiate between a high-level program- ming language and compiled executable codes. The difference between programs and their compiled executables is precisely the same as that made between first-order lan-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.