ebook img

Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics PDF

667 Pages·2017·9.88 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics

Universitext Mark J.D. Hamilton Mathematical Gauge Theory With Applications to the Standard Model of Particle Physics Universitext Universitext Serieseditors SheldonAxler SanFranciscoStateUniversity CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMary,UniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah Écolepolytechnique,CNRS,UniversitéParis-Saclay,Palaiseau EndreSüli UniversityofOxford WojborA.Woyczyn´ski CaseWesternReserveUniversity Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions,alwaysfollowingtheevolution ofteachingcurricula,toverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Moreinformationaboutthisseriesathttp://www.springer.com/series/223 Mark J.D. Hamilton Mathematical Gauge Theory With Applications to the Standard Model of Particle Physics 123 MarkJ.D.Hamilton DepartmentofMathematics Ludwig-MaximilianUniversityofMunich Munich,Germany ISSN0172-5939 ISSN2191-6675 (electronic) Universitext ISBN978-3-319-68438-3 ISBN978-3-319-68439-0 (eBook) https://doi.org/10.1007/978-3-319-68439-0 LibraryofCongressControlNumber:2017957556 Mathematics Subject Classification (2010): 55R10, 53C05, 22E70, 15A66, 53C27, 57S15, 22E60, 81T13,81R40,81V19,81V05,81V10,81V15 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedicatedtomy fatherand mymother Preface With the discovery of a new particle, announced on 4 July 2012 at CERN, whosepropertiesare“consistentwiththelong-soughtHiggsboson”[31],thefinal elementary particle predicted by the classical Standard Model of particle physics hasbeenfound.Theaimofthisbookistoexplainthemathematicalbackgroundas wellassomeofthedetailsoftheStandardModel.Itisdirectedbothatstudentsof mathematics,whoareinterestedinapplicationsofgaugetheoryin physics,andat studentsofphysics,whowouldliketounderstandmoreofthemathematicsbehind theStandardModel. ThebookisbasedonmylecturenotesforgraduatecoursesheldattheUniversity of Stuttgartand the LMU Munichin Germany.A selection of the materialcan be coveredinonesemester.Prerequisitesareanintroductorycourseonmanifoldsand differential geometry as well as some basic knowledge of special relativity, sum- marizedin the appendix.The first six chaptersof the booktreat the mathematical frameworkofgaugetheories,inparticularLiegroups,Liealgebras,representations, groupactions,fibrebundles,connectionsandcurvature,andspinors.Thefollowing three chaptersdiscuss applicationsin physics:the Lagrangiansand interactionsin theStandardModel,spontaneoussymmetrybreaking,theHiggsmechanismofmass generation,and some more advancedand moderntopics like neutrinomasses, CP violationandGrandUnification. The background in mathematics covered in the first six chapters of the book ismuchmoreextensivethanstrictlyneededtounderstandtheStandardModel.For example,theStandardModelisformulatedon4-dimensionalMinkowskispacetime, over which all fibre bundles can be trivialized and spinors have a simple explicit description. However, this book is also intended as an introduction to modern theoreticalphysicsas a whole, andsome of the topics(forinstance, on spinorsor non-trivialfibrebundles)maybeusefultostudentswhoplantostudytopicssuchas supersymmetryorsuperstringtheory.Dependingonthetime,theinterestsandthe priorknowledgeofthereader,he orshe cantake a shortcutandimmediatelystart at the chapters on connections, spinors or Lagrangians, and then go back if more detailedmathematicalknowledgeisrequiredatsomepoint. vii viii Preface SincewefocusontheStandardModel,severaltopicsrelatedtogaugetheoryand fibrebundlescouldnotbecovered,suchascharacteristicclasses,holonomytheory, indextheorems,monopolesandinstantonsaswellasapplicationsofgaugetheory inpuremathematics,likeDonaldsonandSeiberg–Wittentheory.Forthosetopicsa numberoftextbooksexist,someofwhichcanbefoundinthebibliography. An interesting and perhaps underappreciated fact is that a substantial number of phenomena in particle physics can be understood by analysing representations of Lie groups and by rewriting or rearranging Lagrangians. Examples of such phenomena,whichwearegoingtostudy,are: (cid:129) symmetriesofLagrangians (cid:129) interactions between fields corresponding to elementary particles (quarks, lep- tons,gaugebosons,Higgsboson),determinedbytheLagrangian (cid:129) the Higgsmechanismof massgenerationforgaugebosonsaswellas the mass generationforfermionsviaYukawacouplings (cid:129) quarkandneutrinomixing (cid:129) neutrinomassesandtheseesawmechanism (cid:129) CPviolation (cid:129) GrandUnification Ontheotherhand,ifprecisepredictionsaboutscatteringordecayofparticlesshould bemadeorifexplicitformulasforquantumeffects,suchasanomaliesandrunning couplings, should be derived, then quantum field calculations involving Green’s functions,perturbationtheoryandrenormalizationarenecessary.Thesecalculations arebeyondthescopeofthisbook,butanumberoftextbookscoveringthesetopics canbefoundinthephysicsliterature. ThereferencesIusedduringthepreparationofthebookarelistedineachchapter and may be useful to the reader for further studies (this is only a selection of references that I came across over the past several years, sometimes by chance, andtherearemanyothervaluablebooksandarticlesinthisfield). Itisnoteasy tomakea recommendationonhowto fitthe chaptersofthebook intoalecturecourse,becauseitdependsonthepriorknowledgeoftheaudience.A roughguidelinecouldbeasfollows: (cid:129) One-semestercourse:Oftenlecturecoursesondifferentiablemanifoldscontain sections on Lie groups, Lie algebras and group actions. If these topics can be assumedaspriorknowledge,thenonecouldcoveringaugetheorytheunstarred sectionsofChaps.4to7andasmuchaspossibleofChap.8,perhapsgoingback toChaps.1to3ifspecificresultsareneeded. (cid:129) Two-semester course: Depending on the prior knowledge of the audience, one could coverin the first semester Chaps.4 to 6 in moredetailand in the second semesterChaps.7to9.OronecouldcoverinthefirstsemesterChaps.1to5and inthesecondsemesterChaps.6to8(andasmuchaspossibleofChap.9). Munich,Germany MarkJ.D.Hamilton July2017 Acknowledgements ThereareseveralpeopleandinstitutionsIwouldliketothank.First,Iamgratefulto Dieter Kotschick andUwe Semmelmannfor their academicand scientific support since my time as a student. I want to thank Tian-Jun Li for our mathematical discussionsandtheinvitationtoconferencesinMinneapolis,andtheSimonsCenter for Geometry and Physics for the invitation to a workshop in Stony Brook. I wouldalsolike totaketheopportunitytothank(belatedly)theGermanAcademic ScholarshipFoundation(Studienstiftung)fortheirgenerousfinancialsupportduring myyearsofstudy. I am grateful to the LMU Munich and the University of Stuttgart for the opportunity to give lecture courses on mathematical gauge theory, which formed the basis for this book. I want to thank the students who attended the lectures, in particular, Ismail Achmed-Zade, Anthony Britto, Simon-Raphael Fischer, Simon Hirscher, Martin Peev, Alexander Tabler, Danu Thung, Juraj Vrábel and David Wierichs, as well as my course assistants Nicola Pia and Giovanni Placini for readingthelecturenotesandcommentingonthemanuscript.Furthermore,Iwould liketo thankBobbyAcharyaforhisexcellentlecturesontheStandardModeland RobertHellingandRonenPlesserforourinterestingdiscussionsaboutphysics. SpecialthankstoCatrionaByrne,myfirstcontactatSpringer,toRémiLodhfor hisexcellenteditorialsupportandsuggestionswhileIwaswritingthemanuscript, totheanonymousreferees,theeditorsandthecopyeditorforanumberofcomments andcorrections,andtoAnne-KathrinBirchley-Brunforassistanceintheproduction andpublicationofthebook. Finally, I am grateful to John, Barbara and Patrick Hamilton, Gisela Saalfeld andIngeSchmidbauerfortheir encouragementandsupportoverthe years, andto GuoshuWangforherfriendship. ix Conventions Wecollectsomeconventionsthatareusedthroughoutthebook. General (cid:129) Sectionsandsubsectionsmarkedwitha(cid:2) infrontofthetitlecontainadditional or advancedmaterial and can be skipped on a first reading.Occasionally these sectionsareusedinlaterchapters. (cid:129) Awordinitalicsissometimesusedforemphasis,butmoreoftentodenoteterms that have not been defined so far in the text, like gauge boson, or to denote standardterms,likeskewfield,whosedefinitioncanbefoundinmanytextbooks. Awordinboldfaceisusuallyusedfordefinitions. (cid:129) Diffeomorphismsofmanifoldsandisomorphismsofvectorspaces,groups,Lie groups,algebrasandbundlesaredenotedbyŠ. (cid:129) We often use the Einstein summation convention byPsumming over the same indicesin anexpression,withoutwritingthesymbol (wealso sumovertwo lowerortwoupperindices). (cid:129) IfAisaset,thenIdAWA!AdenotestheidSentitymap. (cid:129) Adisjointunionofsetsisdenotedby[P or P. (cid:129) ThesymbolsReandImdenotetherealandimaginarypartofacomplexnumber (andsometimesofaquaternion). LinearAlgebra (cid:129) WedenotebyMat.n(cid:2)m;R/thesetofn(cid:2)m-matriceswithentriesinaringR. xi

Description:
The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa.The first part of the book covers the mathematical theory of Lie group
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.