Universitext Mark J.D. Hamilton Mathematical Gauge Theory With Applications to the Standard Model of Particle Physics Universitext Universitext Serieseditors SheldonAxler SanFranciscoStateUniversity CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMary,UniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah Écolepolytechnique,CNRS,UniversitéParis-Saclay,Palaiseau EndreSüli UniversityofOxford WojborA.Woyczyn´ski CaseWesternReserveUniversity Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions,alwaysfollowingtheevolution ofteachingcurricula,toverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Moreinformationaboutthisseriesathttp://www.springer.com/series/223 Mark J.D. Hamilton Mathematical Gauge Theory With Applications to the Standard Model of Particle Physics 123 MarkJ.D.Hamilton DepartmentofMathematics Ludwig-MaximilianUniversityofMunich Munich,Germany ISSN0172-5939 ISSN2191-6675 (electronic) Universitext ISBN978-3-319-68438-3 ISBN978-3-319-68439-0 (eBook) https://doi.org/10.1007/978-3-319-68439-0 LibraryofCongressControlNumber:2017957556 Mathematics Subject Classification (2010): 55R10, 53C05, 22E70, 15A66, 53C27, 57S15, 22E60, 81T13,81R40,81V19,81V05,81V10,81V15 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Dedicatedtomy fatherand mymother Preface With the discovery of a new particle, announced on 4 July 2012 at CERN, whosepropertiesare“consistentwiththelong-soughtHiggsboson”[31],thefinal elementary particle predicted by the classical Standard Model of particle physics hasbeenfound.Theaimofthisbookistoexplainthemathematicalbackgroundas wellassomeofthedetailsoftheStandardModel.Itisdirectedbothatstudentsof mathematics,whoareinterestedinapplicationsofgaugetheoryin physics,andat studentsofphysics,whowouldliketounderstandmoreofthemathematicsbehind theStandardModel. ThebookisbasedonmylecturenotesforgraduatecoursesheldattheUniversity of Stuttgartand the LMU Munichin Germany.A selection of the materialcan be coveredinonesemester.Prerequisitesareanintroductorycourseonmanifoldsand differential geometry as well as some basic knowledge of special relativity, sum- marizedin the appendix.The first six chaptersof the booktreat the mathematical frameworkofgaugetheories,inparticularLiegroups,Liealgebras,representations, groupactions,fibrebundles,connectionsandcurvature,andspinors.Thefollowing three chaptersdiscuss applicationsin physics:the Lagrangiansand interactionsin theStandardModel,spontaneoussymmetrybreaking,theHiggsmechanismofmass generation,and some more advancedand moderntopics like neutrinomasses, CP violationandGrandUnification. The background in mathematics covered in the first six chapters of the book ismuchmoreextensivethanstrictlyneededtounderstandtheStandardModel.For example,theStandardModelisformulatedon4-dimensionalMinkowskispacetime, over which all fibre bundles can be trivialized and spinors have a simple explicit description. However, this book is also intended as an introduction to modern theoreticalphysicsas a whole, andsome of the topics(forinstance, on spinorsor non-trivialfibrebundles)maybeusefultostudentswhoplantostudytopicssuchas supersymmetryorsuperstringtheory.Dependingonthetime,theinterestsandthe priorknowledgeofthereader,he orshe cantake a shortcutandimmediatelystart at the chapters on connections, spinors or Lagrangians, and then go back if more detailedmathematicalknowledgeisrequiredatsomepoint. vii viii Preface SincewefocusontheStandardModel,severaltopicsrelatedtogaugetheoryand fibrebundlescouldnotbecovered,suchascharacteristicclasses,holonomytheory, indextheorems,monopolesandinstantonsaswellasapplicationsofgaugetheory inpuremathematics,likeDonaldsonandSeiberg–Wittentheory.Forthosetopicsa numberoftextbooksexist,someofwhichcanbefoundinthebibliography. An interesting and perhaps underappreciated fact is that a substantial number of phenomena in particle physics can be understood by analysing representations of Lie groups and by rewriting or rearranging Lagrangians. Examples of such phenomena,whichwearegoingtostudy,are: (cid:129) symmetriesofLagrangians (cid:129) interactions between fields corresponding to elementary particles (quarks, lep- tons,gaugebosons,Higgsboson),determinedbytheLagrangian (cid:129) the Higgsmechanismof massgenerationforgaugebosonsaswellas the mass generationforfermionsviaYukawacouplings (cid:129) quarkandneutrinomixing (cid:129) neutrinomassesandtheseesawmechanism (cid:129) CPviolation (cid:129) GrandUnification Ontheotherhand,ifprecisepredictionsaboutscatteringordecayofparticlesshould bemadeorifexplicitformulasforquantumeffects,suchasanomaliesandrunning couplings, should be derived, then quantum field calculations involving Green’s functions,perturbationtheoryandrenormalizationarenecessary.Thesecalculations arebeyondthescopeofthisbook,butanumberoftextbookscoveringthesetopics canbefoundinthephysicsliterature. ThereferencesIusedduringthepreparationofthebookarelistedineachchapter and may be useful to the reader for further studies (this is only a selection of references that I came across over the past several years, sometimes by chance, andtherearemanyothervaluablebooksandarticlesinthisfield). Itisnoteasy tomakea recommendationonhowto fitthe chaptersofthebook intoalecturecourse,becauseitdependsonthepriorknowledgeoftheaudience.A roughguidelinecouldbeasfollows: (cid:129) One-semestercourse:Oftenlecturecoursesondifferentiablemanifoldscontain sections on Lie groups, Lie algebras and group actions. If these topics can be assumedaspriorknowledge,thenonecouldcoveringaugetheorytheunstarred sectionsofChaps.4to7andasmuchaspossibleofChap.8,perhapsgoingback toChaps.1to3ifspecificresultsareneeded. (cid:129) Two-semester course: Depending on the prior knowledge of the audience, one could coverin the first semester Chaps.4 to 6 in moredetailand in the second semesterChaps.7to9.OronecouldcoverinthefirstsemesterChaps.1to5and inthesecondsemesterChaps.6to8(andasmuchaspossibleofChap.9). Munich,Germany MarkJ.D.Hamilton July2017 Acknowledgements ThereareseveralpeopleandinstitutionsIwouldliketothank.First,Iamgratefulto Dieter Kotschick andUwe Semmelmannfor their academicand scientific support since my time as a student. I want to thank Tian-Jun Li for our mathematical discussionsandtheinvitationtoconferencesinMinneapolis,andtheSimonsCenter for Geometry and Physics for the invitation to a workshop in Stony Brook. I wouldalsolike totaketheopportunitytothank(belatedly)theGermanAcademic ScholarshipFoundation(Studienstiftung)fortheirgenerousfinancialsupportduring myyearsofstudy. I am grateful to the LMU Munich and the University of Stuttgart for the opportunity to give lecture courses on mathematical gauge theory, which formed the basis for this book. I want to thank the students who attended the lectures, in particular, Ismail Achmed-Zade, Anthony Britto, Simon-Raphael Fischer, Simon Hirscher, Martin Peev, Alexander Tabler, Danu Thung, Juraj Vrábel and David Wierichs, as well as my course assistants Nicola Pia and Giovanni Placini for readingthelecturenotesandcommentingonthemanuscript.Furthermore,Iwould liketo thankBobbyAcharyaforhisexcellentlecturesontheStandardModeland RobertHellingandRonenPlesserforourinterestingdiscussionsaboutphysics. SpecialthankstoCatrionaByrne,myfirstcontactatSpringer,toRémiLodhfor hisexcellenteditorialsupportandsuggestionswhileIwaswritingthemanuscript, totheanonymousreferees,theeditorsandthecopyeditorforanumberofcomments andcorrections,andtoAnne-KathrinBirchley-Brunforassistanceintheproduction andpublicationofthebook. Finally, I am grateful to John, Barbara and Patrick Hamilton, Gisela Saalfeld andIngeSchmidbauerfortheir encouragementandsupportoverthe years, andto GuoshuWangforherfriendship. ix Conventions Wecollectsomeconventionsthatareusedthroughoutthebook. General (cid:129) Sectionsandsubsectionsmarkedwitha(cid:2) infrontofthetitlecontainadditional or advancedmaterial and can be skipped on a first reading.Occasionally these sectionsareusedinlaterchapters. (cid:129) Awordinitalicsissometimesusedforemphasis,butmoreoftentodenoteterms that have not been defined so far in the text, like gauge boson, or to denote standardterms,likeskewfield,whosedefinitioncanbefoundinmanytextbooks. Awordinboldfaceisusuallyusedfordefinitions. (cid:129) Diffeomorphismsofmanifoldsandisomorphismsofvectorspaces,groups,Lie groups,algebrasandbundlesaredenotedbyŠ. (cid:129) We often use the Einstein summation convention byPsumming over the same indicesin anexpression,withoutwritingthesymbol (wealso sumovertwo lowerortwoupperindices). (cid:129) IfAisaset,thenIdAWA!AdenotestheidSentitymap. (cid:129) Adisjointunionofsetsisdenotedby[P or P. (cid:129) ThesymbolsReandImdenotetherealandimaginarypartofacomplexnumber (andsometimesofaquaternion). LinearAlgebra (cid:129) WedenotebyMat.n(cid:2)m;R/thesetofn(cid:2)m-matriceswithentriesinaringR. xi
Description: