Mathematical Game Theory and Applications Vladimir Mazalov Mathematical Game Theory and Applications Mathematical Game Theory and Applications Vladimir Mazalov ResearchDirectoroftheInstitute ofAppliedMathematicalResearch, KareliaResearchCenterofRussianAcademyofSciences,Russia Thiseditionfirstpublished2014 ©2014JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby theUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontents ofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Itissoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthe publishernortheauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladviceorotherexpert assistanceisrequired,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Mazalov,V.V.(VladimirViktorovich),author. Mathematicalgametheoryandapplications/VladimirMazalov. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-118-89962-5(hardback) 1.Gametheory. I.Title. QA269.M4152014 519.3–dc23 2014019649 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-1-118-89962-5 Setin10/12ptTimesbyAptaraInc.,NewDelhi,India. 1 2014 Contents Preface xi Introduction xiii 1 Strategic-FormTwo-PlayerGames 1 Introduction 1 1.1 TheCournotDuopoly 2 1.2 ContinuousImprovementProcedure 3 1.3 TheBertrandDuopoly 4 1.4 TheHotellingDuopoly 5 1.5 TheHotellingDuopolyin2DSpace 6 1.6 TheStackelbergDuopoly 8 1.7 ConvexGames 9 1.8 SomeExamplesofBimatrixGames 12 1.9 Randomization 13 1.10 Games2×2 16 1.11 Games2×nandm×2 18 1.12 TheHotellingDuopolyin2DSpacewithNon-UniformDistribution ofBuyers 20 1.13 LocationProblemin2DSpace 25 Exercises 26 2 Zero-SumGames 28 Introduction 28 2.1 MinimaxandMaximin 29 2.2 Randomization 31 2.3 GameswithDiscontinuousPayoffFunctions 34 2.4 Convex-ConcaveandLinear-ConvexGames 37 2.5 ConvexGames 39 2.6 ArbitrationProcedures 42 2.7 Two-PointDiscreteArbitrationProcedures 48 2.8 Three-PointDiscreteArbitrationProcedureswithIntervalConstraint 53 vi CONTENTS 2.9 GeneralDiscreteArbitrationProcedures 56 Exercises 62 3 Non-CooperativeStrategic-Formn-PlayerGames 64 Introduction 64 3.1 ConvexGames.TheCournotOligopoly 65 3.2 PolymatrixGames 66 3.3 PotentialGames 69 3.4 CongestionGames 73 3.5 Player-SpecificCongestionGames 75 3.6 Auctions 78 3.7 WarsofAttrition 82 3.8 Duels,Truels,andOtherShootingAccuracyContests 85 3.9 PredictionGames 88 Exercises 93 4 Extensive-Formn-PlayerGames 96 Introduction 96 4.1 EquilibriuminGameswithCompleteInformation 97 4.2 IndifferentEquilibrium 99 4.3 GameswithIncompleteInformation 101 4.4 TotalMemoryGames 105 Exercises 108 5 ParlorGamesandSportGames 111 Introduction 111 5.1 Poker.AGame-TheoreticModel 112 5.1.1 OptimalStrategies 113 5.1.2 SomeFeaturesofOptimalBehaviorinPoker 116 5.2 ThePokerModelwithVariableBets 118 5.2.1 ThePokerModelwithTwoBets 118 5.2.2 ThePokerModelwithnBets 122 5.2.3 TheAsymptoticPropertiesofStrategiesinthePokerModelwith VariableBets 127 5.3 Preference.AGame-TheoreticModel 129 5.3.1 StrategiesandPayoffFunction 130 5.3.2 EquilibriumintheCaseof B−A ≤ 3A−B 132 B+C 2(A+C) 5.3.3 EquilibriumintheCaseof 3A−B < B−A 134 2(A+C) B+C 5.3.4 SomeFeaturesofOptimalBehaviorinPreference 136 5.4 ThePreferenceModelwithCardsPlay 136 5.4.1 ThePreferenceModelwithSimultaneousMoves 137 5.4.2 ThePreferenceModelwithSequentialMoves 139 5.5 Twenty-One.AGame-TheoreticModel 145 5.5.1 StrategiesandPayoffFunctions 145 5.6 Soccer.AGame-TheoreticModelofResourceAllocation 147 Exercises 152 CONTENTS vii 6 NegotiationModels 155 Introduction 155 6.1 ModelsofResourceAllocation 155 6.1.1 CakeCutting 155 6.1.2 PrinciplesofFairCakeCutting 157 6.1.3 CakeCuttingwithSubjectiveEstimatesbyPlayers 158 6.1.4 FairEqualNegotiations 160 6.1.5 Strategy-Proofness 161 6.1.6 SolutionwiththeAbsenceofEnvy 161 6.1.7 SequentialNegotiations 163 6.2 NegotiationsofTimeandPlaceofaMeeting 166 6.2.1 SequentialNegotiationsofTwoPlayers 166 6.2.2 ThreePlayers 168 6.2.3 SequentialNegotiations.TheGeneralCase 170 6.3 StochasticDesignintheCakeCuttingProblem 171 6.3.1 TheCakeCuttingProblemwithThreePlayers 172 6.3.2 NegotiationsofThreePlayerswithNon-UniformDistribution 176 6.3.3 NegotiationsofnPlayers 178 6.3.4 NegotiationsofnPlayers.CompleteConsent 181 6.4 ModelsofTournaments 182 6.4.1 AGame-TheoreticModelofTournamentOrganization 182 6.4.2 TournamentforTwoProjectswiththeGaussianDistribution 184 6.4.3 TheCorrelationEffect 186 6.4.4 TheModelofaTournamentwithThreePlayersand Non-ZeroSum 187 6.5 BargainingModelswithIncompleteInformation 190 6.5.1 TransactionswithIncompleteInformation 190 6.5.2 HonestNegotiationsinConclusionofTransactions 193 6.5.3 TransactionswithUnequalForcesofPlayers 195 6.5.4 The“Offer-Counteroffer”TransactionModel 196 6.5.5 TheCorrelationEffect 197 6.5.6 TransactionswithNon-UniformDistributionof ReservationPrices 199 6.5.7 TransactionswithNon-LinearStrategies 202 6.5.8 TransactionswithFixedPrices 207 6.5.9 EquilibriumAmongn-ThresholdStrategies 210 6.5.10 Two-StageTransactionswithArbitrator 218 6.6 ReputationinNegotiations 221 6.6.1 TheNotionofConsensusinNegotiations 221 6.6.2 TheMatrixFormofDynamicsintheReputationModel 222 6.6.3 InformationWarfare 223 6.6.4 TheInfluenceofReputationinArbitrationCommittee. ConventionalArbitration 224 6.6.5 TheInfluenceofReputationinArbitrationCommittee. Final-OfferArbitration 225 6.6.6 TheInfluenceofReputationonTournamentResults 226 Exercises 228 viii CONTENTS 7 OptimalStoppingGames 230 Introduction 230 7.1 OptimalStoppingGame:TheCaseofTwoObservations 231 7.2 OptimalStoppingGame:TheCaseofIndependentObservations 234 7.3 TheGameΓ (G)UnderN ≥3 237 N 7.4 OptimalStoppingGamewithRandomWalks 241 7.4.1 SpectraofStrategies:SomeProperties 243 7.4.2 EquilibriumConstruction 245 7.5 BestChoiceGames 250 7.6 BestChoiceGamewithStoppingBeforeOpponent 254 7.7 BestChoiceGamewithRankCriterion.Lottery 259 7.8 BestChoiceGamewithRankCriterion.Voting 264 7.8.1 SolutionintheCaseofThreePlayers 265 7.8.2 SolutionintheCaseofmPlayers 268 7.9 BestMutualChoiceGame 269 7.9.1 TheTwo-ShotModelofMutualChoice 270 7.9.2 TheMulti-ShotModelofMutualChoice 272 Exercises 276 8 CooperativeGames 278 Introduction 278 8.1 EquivalenceofCooperativeGames 278 8.2 ImputationsandCore 281 8.2.1 TheCoreoftheJazzBandGame 282 8.2.2 TheCoreoftheGloveMarketGame 283 8.2.3 TheCoreoftheSchedulingGame 284 8.3 BalancedGames 285 8.3.1 TheBalanceConditionforThree-PlayerGames 286 8.4 The𝜏-ValueofaCooperativeGame 286 8.4.1 The𝜏-ValueoftheJazzBandGame 289 8.5 Nucleolus 289 8.5.1 TheNucleolusoftheRoadConstructionGame 291 8.6 TheBankruptcyGame 293 8.7 TheShapleyVector 298 8.7.1 TheShapleyVectorintheRoadConstructionGame 299 8.7.2 Shapley’sAxiomsfortheVector𝜑(v) 300 i 8.8 VotingGames.TheShapley–ShubikPowerIndexandtheBanzhafPower Index 302 8.8.1 TheShapley–ShubikPowerIndexforInfluenceEvaluationinthe 14thBundestag 305 8.8.2 TheBanzhafPowerIndexforInfluenceEvaluationinthe3rdState Duma 307 8.8.3 TheHollerPowerIndexandtheDeegan–PackelPowerIndexfor InfluenceEvaluationintheNationalDiet(1998) 309 8.9 TheMutualInfluenceofPlayers.TheHoede–BakkerIndex 309 Exercises 312
Description: