ebook img

Mathematical Foundations of Time Series Analysis PDF

309 Pages·2017·2.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Foundations of Time Series Analysis

Jan Beran Mathematical Foundations of Time Series Analysis A Concise Introduction Mathematical Foundations of Time Series Analysis Jan Beran Mathematical Foundations of Time Series Analysis A Concise Introduction 123 JanBeran DepartmentofMathematicsandStatistics UniversityofKonstanz Konstanz,Germany ISBN978-3-319-74378-3 ISBN978-3-319-74380-6 (eBook) https://doi.org/10.1007/978-3-319-74380-6 LibraryofCongressControlNumber:2018930982 MathematicsSubjectClassification(2010):62Mxx,62M10 ©SpringerInternationalPublishingAG,partofSpringerNature2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The historical development of time series analysis can be traced back to many applied sciences, including economics, meteorology, physics or communications engineering.Theoreticaldevelopmentsofthesubjectarecloselylinkedtoprogress in the mathematical theory of stochastic processes and mathematical statistics. Thereareanumberofexcellentbooksontimeseriesanalysis,includingGrenander andRosenblatt(1957),BoxandJenkins(1970),Hannan(1970),Anderson(1971), Koopmans (1974), Fuller (1976), Priestley (1981), Brockwell and Davis (1991), Hamilton (1994), Diggle (1996), Brillinger (2001), Chatfield (2003), Lütkepohl (2006),DurbinandKoopmann(2012),Woodwardetal.(2016),andShumwayand Stoffer(2017). Timeseriesanalysisisnowawell-establishedscientificdisciplinewithrigorous mathematicalfoundations.On the other hand,it is a verybroad subjectarea, and, due to the diverse sciences that contributed to its development, the time series vocabulary is permeated with terminology reflecting the diversity of applications (cf.Priestley1981,Prefacep.vii).Thisbookisanattempttosummarizesomeofthe mainprinciplesoftimeseriesanalysis,withthehopethattheconcisepresentationis helpfulforteachingstudentswithamathematicalbackground.Thebookgrewout of lectures taught to students of mathematics, mathematical finance, physics and economicsattheUniversityofKonstanz. I would like to thank Martin Schützner, Mark Heiler, Dieter Schell, Evgeni Shumm, Nadja Schumm, Arno Weiershäuser, Dirk Ocker, Karim Djaidja, Haiyan Liu,BrittaSteffens,KlausTelkmann,YuanhuaFeng,PhilippSibbertsen,Bikramjit Das,RafalKulik,LiudasGiraitis,SucharitaGhoshandothercolleaguesforfruitful collaboration;andto Volker Bürkelforreadingpartsof a preliminarymanuscript. Thanks go also to the University of Konstanz for granting me a sabbatical with the purpose of working on this book. Most importantly,I would like to thank my family,Céline,SucharitaandSirHastings—ourCotondeTuléar—forkeepingme motivated. Konstanz,Germany JanBeran November2017 v Contents 1 Introduction................................................................. 1 1.1 WhatIsaTimeSeries?............................................... 1 1.2 TimeSeriesVersusiidData.......................................... 2 2 TypicalAssumptions ....................................................... 5 2.1 FundamentalProperties.............................................. 5 2.1.1 ErgodicPropertywithaConstantLimit.................... 5 2.1.2 StrictStationarity ............................................ 7 2.1.3 WeakStationarity............................................ 8 2.1.4 WeakStationarityandHilbertSpaces....................... 11 2.1.5 ErgodicProcesses............................................ 32 2.1.6 SufficientConditionsforthea.s.ErgodicProperty withaConstantLimit........................................ 34 2.1.7 SufficientConditionsfortheL2-ErgodicProperty withaConstantLimit........................................ 35 2.2 SpecificAssumptions ................................................ 39 2.2.1 GaussianProcesses .......................................... 39 2.2.2 LinearProcessesinL2.˝/................................... 40 2.2.3 LinearProcesseswithE.X2/D1.......................... 44 t 2.2.4 MultivariateLinearProcesses............................... 48 2.2.5 Invertibility................................................... 49 2.2.6 RestrictionsontheDependenceStructure.................. 63 3 DefiningProbabilityMeasuresforTimeSeries ......................... 69 3.1 FiniteDimensionalDistributions.................................... 69 3.2 TransformationsandEquations...................................... 70 3.3 ConditionsontheExpectedValue................................... 71 3.4 ConditionsontheAutocovarianceFunction........................ 73 3.4.1 PositiveSemidefiniteFunctions............................. 73 3.4.2 SpectralDistribution......................................... 77 3.4.3 CalculationandPropertiesofFandf....................... 86 vii viii Contents 4 SpectralRepresentationofUnivariateTimeSeries..................... 101 4.1 Motivation............................................................ 101 4.2 HarmonicProcesses.................................................. 102 4.3 ExtensiontoGeneralProcesses...................................... 105 4.3.1 StochasticIntegralswithRespecttoZ...................... 105 4.3.2 ExistenceandDefinitionofZ ............................... 112 4.3.3 InterpretationoftheSpectralRepresentation............... 122 4.4 FurtherProperties .................................................... 122 4.4.1 RelationshipBetweenRe ZandIm Z...................... 122 4.4.2 Frequency .................................................... 123 4.4.3 Overtones..................................................... 124 4.4.4 WhyAreFrequenciesRestrictedtotheRangeŒ(cid:2)(cid:2);(cid:2)(cid:3)?... 125 4.5 LinearFiltersandtheSpectralRepresentation...................... 129 4.5.1 EffectontheSpectralRepresentation....................... 129 4.5.2 EliminationofFrequencyBands............................ 134 5 SpectralRepresentationofRealValuedVectorTimeSeries........... 137 5.1 Cross-SpectrumandSpectralRepresentation....................... 137 5.2 CoherenceandPhase................................................. 146 6 UnivariateARMAProcesses .............................................. 161 6.1 Definition............................................................. 161 6.2 StationarySolution................................................... 161 6.3 CausalStationarySolution........................................... 166 6.4 CausalInvertibleStationarySolution ............................... 169 6.5 AutocovariancesofARMAProcesses .............................. 170 6.5.1 CalculationbyIntegration................................... 170 6.5.2 CalculationUsingtheAutocovarianceGenerating Function...................................................... 170 6.5.3 CalculationUsingtheWoldRepresentation................ 175 6.5.4 RecursiveCalculation........................................ 176 6.5.5 AsymptoticDecay ........................................... 177 6.6 Integrated,SeasonalandFractionalARMAandARIMA Processes.............................................................. 185 6.6.1 IntegratedProcesses ......................................... 185 6.6.2 SeasonalARMAProcesses.................................. 186 6.6.3 FractionalARIMAProcesses ............................... 187 6.7 UnitRoots,SpuriousCorrelation,Cointegration................... 200 7 GeneralizedAutoregressiveProcesses.................................... 203 7.1 DefinitionofGeneralizedAutoregressiveProcesses ............... 203 7.2 StationarySolutionofGeneralizedAutoregressiveEquations..... 204 7.3 DefinitionofVARMAProcesses.................................... 209 7.4 StationarySolutionofVARMAEquations ......................... 211 7.5 DefinitionofGARCHProcesses .................................... 213 7.6 StationarySolutionofGARCHEquations.......................... 214 Contents ix 7.7 DefinitionofARCH(1)Processes.................................. 219 7.8 StationarySolutionofARCH(1)Equations....................... 220 8 Prediction.................................................................... 223 8.1 BestLinearPredictionGivenanInfinitePast....................... 223 8.2 Predictability ......................................................... 225 8.3 ConstructionoftheWoldDecompositionfromf................... 230 8.4 BestLinearPredictionGivenaFinitePast.......................... 235 9 Inferencefor(cid:2),(cid:3) andF................................................... 241 9.1 LocationEstimation.................................................. 241 9.2 LinearRegression.................................................... 244 9.3 NonparametricEstimationof(cid:4)...................................... 253 9.4 NonparametricEstimationoff ...................................... 262 10 ParametricEstimation..................................................... 281 10.1 GaussianandQuasiMaximumLikelihoodEstimation............. 281 10.2 WhittleApproximation .............................................. 284 10.3 AutoregressiveApproximation...................................... 287 10.4 ModelChoice......................................................... 289 References......................................................................... 293 AuthorIndex...................................................................... 299 SubjectIndex..................................................................... 303 Chapter 1 Introduction 1.1 WhatIs a TimeSeries? Definition1.1 Letk 2N,T (cid:3)R.Afunction xWT !Rk,t!x t or,equivalently,asetofindexedelementsofRk, ˚ (cid:2) xjx 2Rk;t2T t t iscalledanobservedtimeseries.Wealsowrite x (t2T)or .x/ : t t t2T Definition1.2 Letk 2N,T (cid:3)R, (cid:3) (cid:4) ˝ D Rk T DspaceoffunctionsX WT !Rk; F D(cid:5)-algebraon˝; PDprobabilitymeasureon .˝;F/: The probability space .˝;F;P/, or equivalently the set of indexed random variables ˚ (cid:2) XjX 2Rk;t2T , .X/ (cid:4)P t t t t2T ©SpringerInternationalPublishingAG,partofSpringerNature2017 1 J.Beran,MathematicalFoundationsofTimeSeriesAnalysis, https://doi.org/10.1007/978-3-319-74380-6_1 2 1 Introduction Table1.1 TypesoftimeseriesX 2Rk(t2T) t Property Terminology kD1 Univariatetimeseries k(cid:2)2 Multivariatetimeseries Tcountable,8a<b2RW T\Œa;b(cid:3)finite Discretetime Tdiscrete,9u2RCs.t.tjC1(cid:3)tjDu Equidistanttime T DŒa;b(cid:3)(a<b2R),TDRCorTDR Continuoustime iscalledatimeseries,ortimeseriesmodel.Insteadof.˝;F;P/wealsowrite X (t2T)or .X/ : t t t2T Moreover,foraspecificrealization! 2˝,wewriteX.!/and t .x/ D.X .!// Dsamplepathof .X/ ; t t2T t t2T t t2T .x / D.X .!// DfinitesamplepathofX: ti iD1;:::;n ti iD1;:::;n t Remark1.1 ˝ maybemoregeneralthaninDefinition1.2.Similarly,theindexset T maybemoregeneralthanasubsetofR,butitmustbeorderedandmetric.Thus, .X/ isastochasticprocesswithanorderedmetricindexsetT: t t2T Remark1.2 AnoverviewofthemostcommontypesoftimeseriesX 2Rk (t2T, t T ¤;)isgiveninTable1.1. Remark1.3 IfX Dequidistanttimeseries,thenwemaysetw.l.o.g.T (cid:3)Z. t 1.2 TimeSeries Versus iidData What distinguishes statistical analysis of iid data from time series analysis? We illustratethequestionbyconsideringthecaseofequidistantunivariaterealvalued timeseriesX 2R(t2Z). t Problem1.1 IsconsistentestimationofPpossible? Solution1.1 The answer depends on available a priori information and assump- tionsoneiswillingtomake.Thisisillustratedinthefollowing.

Description:
This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.