ebook img

Mathematical Foundations of System Safety Engineering: A Road Map for the Future PDF

349 Pages·2020·12.423 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Foundations of System Safety Engineering: A Road Map for the Future

Richard R. Zito Mathematical Foundations of System Safety Engineering A Road Map for the Future Mathematical Foundations of System Safety Engineering Thisisasquarehighdensitypinarray.Thelengthofthesepinsismuchgreaterthanthedistance that separates them. If one of these pins should be bent, there is a high probability that it will contactaneighbouringpinandcreateashortcircuit.Inspiteofthisrisk,theuseofsuchpinarrays iscommonintheelectronicsindustrybecausetheysavespace. Richard R. Zito Mathematical Foundations of System Safety Engineering A Road Map for the Future 123 Richard R.Zito Richard R.Zito Research LLC Tucson,AZ, USA ISBN978-3-030-26240-2 ISBN978-3-030-26241-9 (eBook) https://doi.org/10.1007/978-3-030-26241-9 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. It should be noted that this work is published with the understanding that the author is supplying informationonlyandisnotattemptingtorenderengineeringjudgmentorotherprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforyoursituation,andtheauthormakesno warrantyorguaranteethattheuseoftheinformationprovidedhereinwillleadtosafersystems.You shouldrelyonyourownskillandjudgmentwhenmakinguseofthisinformation.Theauthorshallnotbe liableforanylossofprofitsordamagesallegedtohaveresultedfromtheinformationcontainedherein. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To my former supervisor and mentor Rene Fitzpatrick (1956–2015). He challenged everyone, because he believed that everyone rises to a challenge. —Richard R. Zito Preface TheeminentbiologistDavidAttenboroughoncesaid,“Therearesomefourmillion (species of) animals and plants - four million solutions to the problems of staying alive.”Inasense,thatiswhatthisbookisabout-solutionstotheproblemsofstaying alive. Since this book deals primarily with complex nonliving hardware/firmware/ softwaresystems,theexpression“stayingalive”shouldbeinterpretedascontinuing to perform a desired function. Of course, collateral loss of human life as well as environmental damagecanalsooccur duringthefailure ofcomplex nonlivingsys- tems. Furthermore, even the casual observer cannot help noticing that catastrophic failures of nuclear reactors, submarines, aircraft, and other potentially dangerous complexsystemsoccur far morefrequentlythan anyone wouldwant.Ideally, such disastersshouldneveroccur!Inspiteofengineers’bestefforts,thereseemstobeno way to stop such draconian accidents. This record of failures naturally begs the question,“Isthereanywaytobuildaperfectfailure-proofcomplexsystem?”Or,at least,isthereanysystematic,scientific,waytodesignacomplexsystemthatmini- mizes risk? And, how does one define “perfect” and “risk” for real systems? This book will attempt to answer these difficult questions. Traditionally, the task of “mishap” (accident) prediction, as well as detection, and correction of system “hazards”(flawsthathavenotyetbecomemishaps)hasbeenaheuristicactivityof personnelwho have gained theirexperience via“lessonslearned”over (hopefully) manyyearsofanalyzingaccidents.Thishit-and-missapproachtosystemsafetyisnot what this book is about. Here, mathematical tools will be described that provide certain, or at least probabilistic, solutions to the problems of prediction, detection, andcorrection.Assuch,thisbookprovidesadefinitecourseofstudy,insteadofan apprenticeship of indefinite length and effectiveness. Furthermore, it is a course of studythatopensanewbranchofengineering,andanewbranchofscientificinquiry. Tucson, USA Richard R. Zito vii Physical Constants and Mathematical Formulae Physical Constants Gravitational Constant, G 6.67 (cid:1) 10−11 N-m2/kg2 Ideal Gas Constant, R 0.001987 kcal/mole K Faraday Constant, F 23.06 kcal/V mole Boltzmann’s Constant, k 1.38 (cid:1) 10−23 J/molecule K Proton Rest Mass, m 1.67 (cid:1) 10−27 kg p Equatorial Radius of the Earth, R 6.378 (cid:1) 106 m E Mass of the Earth, M 5.983 (cid:1) 1024 kg E Radius of the Moon, R 1738 km M Transcendental Numbers Pi, p 3.14159 Natural base, e 2.71828 Euler–Mascheroni Constant, c 0.57721 Logarithmic Conversion Factor (common to natural) 2.30258 Infinite Series P1 arN ¼a/ð1(cid:3)rÞwherejrj\1;a6¼0, r 6¼0ðGeometricSeriesÞ N ix x PhysicalConstantsandMathematicalFormulae Derivatives (Fundamental Forms) da/dx = 0, where “a” is a constant dx/dx = 1 d(a f(x))/dx = a df(x)/dx, where “a” is a constant d(f(x) + g(x) + …)/dx = df(x)/dx + dg(x)/dx + … d(uv)/dx = u (dv/dx) + v (du/dx), where u and v may be functions of independent variable x dxN/dx = NxN−1, where N is a real number deax/dx = aex, where “a” is a constant Indefinite Integrals (Fundamental Forms) R R dx¼xþRC, where C is a constant of integration R adx¼a dx, where “a” is aRconstant R R ðfðxÞ þ gðxÞRþ ...Þdx¼ fðxÞdxþ gðxÞdxþ... R udv¼uv(cid:2)(cid:3) vdu, whe(cid:3)re u and v may be functions of independent variable x xN dx¼ xNþ1=ðNþ1Þ þC,whereCisaconstantofintegrationandNisreal bRut 6¼ −1 x(cid:3)1 dx¼flnxgþC, where C is a constant of integration Separation of Variables RR (cid:4)R (cid:5)(cid:4)R (cid:5) fðxÞgðyÞdxdy¼ fðxÞdx gðyÞdy if x and y are independent variables Differential Equations Linear Homogeneous Equation of 2nd Order: u00þpðzÞu0þqðzÞu¼0 (asolutionexistsifp(z)andq(z)arecontinuousoveranopenintervalcontainingz and u(z) is twice differentiable with respect to z) Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Heuristic Versus Analytic Methods . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Product Development Cycle-Hazard Prediction, Detection, and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 The Four Classical Branches of System Safety. . . . . . . . . . . . . 8 1.4 Tools of the Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Populations, Hardware, Software, and Firmware. . . . . . . . . . . . 23 1.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Part I Fundamentals 2 Decomposition of the Failure Histogram. . . . . . . . . . . . . . . . . . . . . 31 2.1 Background and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 Schrödinger’s Cat and Systems of Finite Complexity . . . . . . . . 34 2.3 A Distribution of Distributions for Systems of Infinite Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Approximate Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6 Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Bounding the “Black Swan” Probability. . . . . . . . . . . . . . . . . . . . . 51 3.1 The Anatomy of a Black Swan: Four Case Histories. . . . . . . . . 51 3.2 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.