ebook img

Mathematical foundations of imaging, tomography and wavefield inversion PDF

538 Pages·2012·5.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical foundations of imaging, tomography and wavefield inversion

MathematicalFoundationsofImaging,Tomography andWavefieldInversion Inverse problems are of interest and importance across many branches of physics, math- ematics, engineering and medical imaging. In this text, the foundations of imaging and wavefield inversion are presented in a clear and systematic way. The necessary theory is gradually developed throughout the book, progressing from simple wave-equation-based models to vector wave models. By combining theory with numerous MATLAB-based examples, the author promotes a complete understanding of the material and establishes abasisforreal-worldapplications. Keytopicsofdiscussionincludethederivationofsolutionstosourceradiationandscat- teringproblemsusingGreen-functiontechniquesandeigenfunctionexpansions;thepropa- gationandscatteringofwavesinhomogeneousandinhomogeneousbackgrounds;andthe conceptsoffieldtimereversalandfieldbackpropagationandthekeyrolethattheyplayin imagingandinversescattering. Bridging the gap between mathematics and physics, this multidisciplinary book will appeal to graduate students working in established areas of inverse scattering and to researchers developing new computational imaging modalities. Additional resources, includingsolutionstoend-of-chapterproblemsandMATLABcodesforalltheexamples presentedinthebook,areavailableonlineatwww.cambridge.org/9780521119740. AnthonyJ.Devaney is Distinguished Professor of Engineering at Northeastern University, Bostonandhehasworkedinthegeneralareaofinverseproblemsformorethan40years. He did his Ph.D. at the Institute of Optics at the University of Rochester and his thesis wassupervisedbyProfessorEmilWolf.ProfessorDevaneyhasexperienceingeophysics inverseproblemsandinverseproblemsrelatedtoradar,opticalandacousticimaging.His patentondiffractiontomography(coveredinChapter8ofthisbook)wasselectedasone ofthetop50patentsfromSchlumbergerDollResearch(theprincipalbasicresearchcenter oftheSchlumbergerCorporation)overitsfirst50yearsofexistence. Mathematical Foundations of Imaging, Tomography and Wavefield Inversion ANTHONY J. DEVANEY NortheasternUniversity,Boston CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,SãoPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521119740 (cid:2)c A.J.Devaney2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2012 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Devaney,AnthonyJ. Mathematicalfoundationsofimaging,tomographyandwavefield inversion/AnthonyJ.Devaney,NortheasternUniversity,Boston. pages cm ISBN978-0-521-11974-0(hardback) 1. Waveequation. 2. Inverseproblems(Differentialequations) I. Title. QC174.26.W28D382 2012 (cid:3) 515.357–dc23 2012000073 ISBN978-0-521-11974-0Hardback Additionalresourcesforthispublicationatwww.cambridge.org/9780521119740 CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pagexv 1 Radiationandinitial-valueproblemsforthewaveequation 1 1.1 Theradiationproblem 1 1.1.1 Fourierintegralrepresentations 2 1.2 Greenfunctions 6 1.2.1 RetardedandadvancedGreenfunctions 7 1.2.2 Frequency-domainGreenfunctions 9 1.3 Green-functionsolutionstotheradiationproblem 12 1.3.1 Theprimaryfieldsolution 14 1.3.2 Representation of the radiated field in terms of boundary valuesviatheKirchhoff–Helmholtztheorem 16 1.3.3 Theinteriorfieldsolution 18 1.4 Theinitial-valueproblemforthewaveequation 20 1.4.1 Uniqueness 21 1.4.2 Fieldbackpropagation 21 1.5 Frequency-domainsolutionoftheradiationproblem 22 1.5.1 TheradiationpatternandtheSommerfeldradiation condition 23 1.6 Radiatedpowerandenergy 25 1.7 Non-radiatingsources 27 1.7.1 Non-radiatingsourcesinthefrequencydomain 29 1.7.2 Asourcedecompositiontheorem 31 1.7.3 Essentiallynon-radiatingsources 33 1.7.4 Thefielduniquenesstheorem 35 1.8 Surfacesources 36 1.8.1 Non-radiatingsurfacesources 38 1.8.2 Activeobjectcloaking 39 Furtherreading 40 Problems 41 2 Radiationandboundary-valueproblemsinthefrequencydomain 43 2.1 Frequency-domainformulationoftheradiationproblem 43 2.1.1 Analytic-signalrepresentationoftime-domainfields 44 2.1.2 TheHelmholtzequation 45 2.1.3 Lorentzdispersivemedium 45 v vi Contents 2.1.4 TheSommerfeldradiationconditionindispersivemedia 47 2.1.5 Incoming-andconjugate-waveradiationconditions 48 2.2 Greenfunctions 50 2.2.1 Greenfunctionsintwospacedimensions 52 2.3 Time-domainGreenfunctions 53 2.3.1 Keyfeaturesofthetime-domainGreenfunctions 54 2.4 Green-functionsolutionoftheradiationproblem 55 2.4.1 Solutionoftheradiationproblemintwospacedimensions 57 2.5 TheKirchhoff–Helmholtzrepresentationoftheradiatedfield 58 2.5.1 Theinteriorfieldsolutionandfieldbackpropagation 59 2.6 Radiatedpowerandenergy 60 2.7 Non-radiatingandessentiallynon-radiatingsourcesindispersivemedia 63 2.7.1 Non-radiatingsourcesandtheradiationpattern 63 2.7.2 Essentiallynon-radiatingsources 64 2.8 Boundary-valueproblemsfortheHelmholtzequation 65 2.8.1 Theinteriorboundary-valueproblem 67 2.8.2 Theexteriorboundary-valueproblemforclosedboundaries 68 2.8.3 Theexteriorboundary-valueproblemforopenboundaries 70 2.8.4 SymmetryoftheGreenfunctions 71 2.9 TheRayleigh–Sommerfeldboundary-valueproblem 72 2.9.1 The Rayleigh–Sommerfeld solution for two-dimensional wavefields 76 2.9.2 Rayleigh–Sommerfeldrepresentationoftheradiatedfield 76 2.10 SolutionoftheRSproblemusingtheHelmholtzidentities 77 2.11 BackpropagationandtheinverseRSboundary-valueproblem 78 2.11.1 TheinverseRSboundary-valueproblem 79 2.11.2 Connectionwithwavefieldtimereversal 80 2.12 Surfacesourcesindispersivemedia 81 2.12.1 Non-radiatingsurfacesources 82 Furtherreading 84 Problems 85 3 EigenfunctionexpansionsofsolutionstotheHelmholtzequation 87 3.1 SeparationofvariablesandtheSturm–Liouvilleproblem 87 3.1.1 TheSturm–Liouvilleproblem 88 3.2 Cartesiancoordinates 89 3.2.1 Homogeneousplane-waveexpansions 90 3.2.2 Plane-waveexpansionsthatincludeinhomogeneousplanewaves 92 3.2.3 Plane-waveexpansionsinvolvingevanescentplanewaves 94 3.3 Sphericalcoordinates 99 3.4 Multipoleexpansions 104 3.4.1 Multipole expansions of the Dirichlet and Neumann Green functions 107 3.4.2 Plane-waveexpansionsofthemultipolefields 110 vii Contents 3.5 Circularcylindricalcoordinates 111 3.6 Two-dimensionalwavefields 113 3.6.1 Polarcoordinates 113 Furtherreading 116 Problems 116 4 Angular-spectrumandmultipoleexpansions 118 4.1 TheWeylexpansion 118 4.1.1 The angular-spectrum expansion for the conjugate-wave Greenfunction 120 4.1.2 Theangular-spectrumexpansionoftheincoming-waveGreen function 121 4.1.3 Angle-variableformsoftheGreen-functionexpansions 122 4.2 Theangular-spectrumexpansionoftheradiatedfield 125 4.2.1 Theangle-variableformoftheradiatedfieldexpansion 127 4.2.2 Theangularspectrumandradiationpattern 127 4.2.3 Theradiationpatternofanon-radiatingsource 129 4.3 Forwardandbackpropagationusingtheangularspectrum 129 4.3.1 Backpropagationfromtheradiationpattern 133 4.4 Stabilizedfieldbackpropagationandtheinverseboundary-valueproblem 133 4.4.1 Backpropagationusingtheincoming-waveGreenfunction 134 4.4.2 Backpropagationusingtheconjugate-waveGreenfunction andfieldtimereversal 136 4.5 Theangular-spectrumexpansionofthescalarwaveletfield 137 4.6 Angular-spectrumexpansionsintwospacedimensions 139 4.6.1 The angular-spectrum expansion of the solution to the 2D radiationproblem 141 4.6.2 Two-dimensionalforwardandbackpropagation 142 4.6.3 Theangle-variableformofthe2Dangular-spectrumexpansion 146 4.7 TheFresnelapproximationandFresneltransform 147 4.7.1 The3DFresnelapproximationandFresneltransform 148 4.7.2 The2DFresnelapproximation 151 4.8 Multipoleexpansions 153 4.8.1 Multipoleexpansionoftheradiatedfield 154 4.8.2 Forwardandbackpropagationusingthemultipoleexpansion 155 4.8.3 Backpropagationintheinteriorboundary-valueproblem 157 4.8.4 Backpropagationfromtheradiationpattern 158 4.9 Multipoleexpansionsoftwo-dimensionalwavefields 160 4.10 Connectionbetweentheangular-spectrumandmultipoleexpansions 161 4.11 Radiatedenergyoutofplaneandsphericalboundaries 163 4.11.1 Radiatedenergyintoaninfinitehalf-space 164 4.11.2 Radiatedenergyfromasphericalregion 166 Furtherreading 167 Problems 167 viii Contents 5 Theinversesourceproblem 169 5.1 TheISPforthewaveequation 169 5.1.1 TheISPintegralequation 171 5.1.2 ThePorter–Bojarskiintegralequation 174 5.1.3 Timereversalandtheback-propagatedfield 176 5.1.4 TheISPintermsofDirichletorNeumannboundary-valuedata 177 5.2 TheISPforsurfacesources 179 5.2.1 TheISPforaplanarsurfacesource 179 5.2.2 SolvingtheISPintegralequation 180 5.2.3 Interpretationofthesolution 182 5.3 TheISPfor3Dsourcessupportedinplane-parallelslabs 183 5.3.1 Solvingforthesource 184 5.3.2 Limitingformasasurfacesource 186 5.3.3 Time-reversalimagingforslabgeometry 187 5.4 TheHilbert-spaceformulationoftheISP 188 5.4.1 Theadjointoperator 191 5.4.2 Singularvaluedecomposition 194 ˆ 5.4.3 TherangeandnullspaceofT 197 5.4.4 Theleast-squarespseudo-inverse 198 5.4.5 Filteredbackpropagationandback-propagationimaging 201 5.5 Theantenna-synthesisproblem 202 5.5.1 ImplementationoftheSVD 203 5.5.2 Thesolutiontothefar-fieldISP 206 5.5.3 Thealgorithmpoint-spreadfunction 209 5.5.4 Timereversalandback-propagationimaging 210 5.6 Picard’sconditionandminimum-sizedsources 211 5.7 Antennasynthesisandthefar-fieldISPin2Dspace 214 5.7.1 ImplementationoftheSVD 215 5.7.2 Thesolutiontothe2Dfar-fieldISPandalgorithmPSF 217 5.7.3 Two-dimensionalscalarwaveletsource 220 5.8 Thelimited-viewproblem 222 5.8.1 The2Dlimited-viewproblem 223 5.8.2 Computingthesingularsystem 224 Furtherreading 225 Problems 225 6 Scatteringtheory 229 6.1 Potentialscatteringtheory 230 6.2 TheLippmann–Schwingerequation 232 6.2.1 TheLippmann–SchwingerequationforthefullGreenfunction 233 6.2.2 TheformalsolutiontotheLSequation 234 6.3 Scatteringfromhomogeneouspenetrableobjects 235 6.3.1 Scatteringfromhomogeneousspheresandcylinders 236 6.3.2 Scatteringfromahomogeneoussphere 236

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.