ebook img

Mathematical Foundations for Signal Processing, Communications, and Networking PDF

852 Pages·2012·12.123 MB·\852
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Foundations for Signal Processing, Communications, and Networking

K12570_cover_final_rev 12/2/11 11:13 AM Page 1 C M Y CM MY CY CMY K ELECTRICAL ENGINEERING Serpedin • Mathematical Foundations Mathematical Foundations Chen for • for Rajan SIGNAL PROCESSING, COMMUNICATIONS, AND NETWORKING S SIGNAL PROCESSING, I G N Mathematical Foundations for Signal Processing, Communications, and Networking COMMUNICATIONS, A describes mathematical concepts and results important in the design, analysis, and L optimization of signal processing algorithms, modern communication systems, and networks. Helping readers master key techniques and comprehend the current PM AND NE TWORKING research literature, the book offers a comprehensive overview of methods and Ra applications from linear algebra, numerical analysis, statistics, probability, stochastic Ot A h processes, and optimization. NCe Em D From basic transforms to Monte Carlo simulation to linear programming, the text S a covers a broad range of mathematical techniques essential to understanding the NSt i concepts and results in signal processing, telecommunications, and networking. Ic EN a Along with discussing mathematical theory, each self-contained chapter presents TGl examples that illustrate the use of various mathematical concepts to solve different W F , applications. Each chapter also includes a set of homework exercises and pointers o to further readings for additional topics and applications. OCu ROn This text helps readers understand fundamental and advanced results as well as KMd a recent research trends in the interrelated fields of signal processing, IMt N i telecommunications, and networking. It provides all the necessary mathematical o GU background to prepare students for more advanced courses and train specialists n working in these areas. Ns I f C o r A T I O N S , Edited by K12570 Erchin Serpedin • Thomas Chen • Dinesh Rajan 6000 Broken Sound Parkway, NW Suite 300, Boca Raton, FL 33487 711 Third Avenue an informa business New York, NY 10017 www.crcpress.com 2 Park Square, Milton Park www.crcpress.com Abingdon, Oxon OX14 4RN, UK Composite (cid:105) (cid:105) “main˙def” — 2011/11/21 — 10:05 — (cid:105) (cid:105) Mathematical Foundations for SIGNAL PROCESSING, COMMUNICATIONS, AND NETWORKING (cid:105) (cid:105) (cid:105) (cid:105) TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk (cid:105) (cid:105) “main˙def” — 2011/11/21 — 10:05 — (cid:105) (cid:105) Mathematical Foundations for SIGNAL PROCESSING, COMMUNICATIONS, AND NETWORKING Edited by Erchin Serpedin • Thomas Chen • Dinesh Rajan Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business (cid:105) (cid:105) (cid:105) (cid:105) CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20111212 International Standard Book Number-13: 978-1-4398-5514-0 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com (cid:105) (cid:105) “main˙def” — 2011/11/21 — 10:05 — (cid:105) (cid:105) For Zara, Nisa, Aisha and Nesrin (ES) For Robin and Kayla (TC) In memory of Dilip Veeraraghavan (DR) “Mathematics is the queen of the sciences.” Carl Friedrich Gauss (cid:105) (cid:105) (cid:105) (cid:105) TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk (cid:105) (cid:105) “main˙def” — 2011/11/21 — 10:05 — (cid:105) (cid:105) Contents List of Figures xxi List of Tables xxvii Preface xxix Editors xxxi List of Contributors xxxiii List of Acronyms xxxv Notations and Symbols xxxix 1 Introduction 1 2 Signal Processing Transforms 5 Serhan Yarkan and Khalid A. Qaraqe 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Basic Transformations . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Fourier Series and Transform. . . . . . . . . . . . . . . . . . . . . 6 2.3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.2 Fourier Series. . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Impulse-Train Sampling . . . . . . . . . . . . . . . . . . . 12 2.4.2 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Cosine and Sine Transforms . . . . . . . . . . . . . . . . . . . . . 14 2.5.1 Cosine Transform . . . . . . . . . . . . . . . . . . . . . . 14 2.5.2 Sine Transform . . . . . . . . . . . . . . . . . . . . . . . . 16 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “main˙def” — 2011/11/21 — 10:05 — (cid:105) (cid:105) viii CONTENTS 2.6 Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 Properties of Laplace Transform . . . . . . . . . . . . . . 20 2.7 Hartley Transform. . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7.1 Properties of Hartley Transform . . . . . . . . . . . . . . 22 2.8 Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.8.1 Properties of Hilbert Transform . . . . . . . . . . . . . . 24 2.9 Discrete-Time Fourier Transform . . . . . . . . . . . . . . . . . . 25 2.10 The Z-Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.10.1 Properties of Z-Transform. . . . . . . . . . . . . . . . . . 29 2.11 Conclusion and Further Reading . . . . . . . . . . . . . . . . . . . 30 2.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Linear Algebra 35 Fatemeh Hamidi Sepehr and Erchin Serpedin 3.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Subspaces and Direct Sums . . . . . . . . . . . . . . . . . 36 3.1.2 Spanning and Linear Independency . . . . . . . . . . . . 37 3.1.3 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.5 Ordered Basis . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.6 Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.7 Inner-Products . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.8 Induced Norms . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.9 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.10 Gram-Schmidt Orthogonalization . . . . . . . . . . . . . 41 3.2 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Range and Nullspace of a Linear Transformation . . . . . 42 3.2.2 Composition and Invertibility. . . . . . . . . . . . . . . . 42 3.2.3 Matrix Representation of Linear Transformations . . . . 42 3.2.4 Projection Operators . . . . . . . . . . . . . . . . . . . . 43 3.2.5 Linear Functionals and Dual Spaces . . . . . . . . . . . . 44 3.2.6 Adjoint of a Linear Transformation . . . . . . . . . . . . 45 3.2.7 Four Fundamental Subspaces . . . . . . . . . . . . . . . . 47 3.3 Operator Norms and Matrix Norms . . . . . . . . . . . . . . . . . 47 3.4 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . 49 3.5 Determinant, Adjoint, and Inverse of a Matrix . . . . . . . . . . . 50 3.6 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.7 Unitary and Orthogonal Operators and Matrices. . . . . . . . . . 51 3.8 LU Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.9 LDL and Cholesky Decomposition . . . . . . . . . . . . . . . . . . 53 3.10 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 55 (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) (cid:105) “main˙def” — 2011/11/21 — 10:05 — (cid:105) (cid:105) CONTENTS ix 3.11 Householder and Givens Transformations . . . . . . . . . . . . . . 55 3.11.1 Orthogonal Reduction . . . . . . . . . . . . . . . . . . . . 58 3.12 Best Approximations and Orthogonal Projections . . . . . . . . . 59 3.13 Least Squares Approximations . . . . . . . . . . . . . . . . . . . . 59 3.14 Angles Between Subspaces . . . . . . . . . . . . . . . . . . . . . . 61 3.14.1 Principal Angles Between Subspaces . . . . . . . . . . . . 61 3.15 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . 62 3.15.1 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . 62 3.16 Schur Factorization and Spectral Theorem . . . . . . . . . . . . . 63 3.17 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . 64 3.18 Rayleigh Quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.19 Application of SVD and Rayleigh Quotient: Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.20 Special Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.20.1 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . 68 3.20.2 Circulant Matrices . . . . . . . . . . . . . . . . . . . . . . 69 3.20.3 Toeplitz Matrices . . . . . . . . . . . . . . . . . . . . . . 70 3.20.4 Hankel Matrices . . . . . . . . . . . . . . . . . . . . . . . 71 3.20.5 Vandermonde Matrices . . . . . . . . . . . . . . . . . . . 71 3.20.6 Normal Matrices . . . . . . . . . . . . . . . . . . . . . . . 72 3.20.7 Stochastic Matrices . . . . . . . . . . . . . . . . . . . . . 72 3.20.8 Positive and Negative Definite Matrices . . . . . . . . . . 72 3.20.9 Matrix Condition Number . . . . . . . . . . . . . . . . . 73 3.20.10 Sherman-Morrison-Woodbury Identity . . . . . . . . . . . 74 3.20.11 Schur Complement. . . . . . . . . . . . . . . . . . . . . . 75 3.20.12 Generalized Inverses . . . . . . . . . . . . . . . . . . . . . 75 3.21 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.21.1 Kronecker Product. . . . . . . . . . . . . . . . . . . . . . 78 3.21.2 Hadamard Product . . . . . . . . . . . . . . . . . . . . . 78 3.21.3 Dot Product . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.21.4 Direct Sum . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.21.5 Differentiation of Matrix and Vector Functions . . . . . . 80 3.22 References and Further Studies . . . . . . . . . . . . . . . . . . . 82 3.23 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Elements of Galois Fields 93 Tolga Duman 4.1 Groups, Rings, and Fields . . . . . . . . . . . . . . . . . . . . . . 94 4.1.1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.1.2 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 (cid:105) (cid:105) (cid:105) (cid:105)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.