ebook img

Mathematical discovery PDF

254 Pages·2011·1.783 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical discovery

MATHEMATICAL DISCOVERY Andrew M. Bruckner UniversityofCalifornia,SantaBarbara Brian S. Thomson SimonFraserUniversity Judith B. Bruckner ClassicalRealAnalysis.com CLASSICALREALANALYSIS.COM This text is intended for a course introducing the idea of mathematical dis- covery,especiallytostudentswhomaynotbeparticularlyenthusedaboutmath- ematicsas yet. Citation: Mathematical Discovery [Color Edition], Andrew M. Bruckner, Brian S. Thomson,andJudithB.Bruckner, ClassicalRealAnalysis.com (2011), xv253pp. ISBN-13: 978-1463730574 ISBN-10: 1463730578 DatePDFfilecompiled:July26,2011 ISBN-13: 978-1463730574 ISBN-10: 1463730578 CLASSICALREALANALYSIS.COM Contents TableofContents ii Preface xi To the Instructor xv 1 Tilings 1 1.1 Squaringtherectangle . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Continueexperimenting . . . . . . . . . . . . . . . . . 3 1.1.2 Focus onthesmallestsquare . . . . . . . . . . . . . . . 3 1.1.3 Where isthesmallestsquare . . . . . . . . . . . . . . . 4 1.1.4 What are theneighborsofthesmallestsquare? . . . . . 5 1.1.5 Is thereafivesquaretiling? . . . . . . . . . . . . . . . 7 1.1.6 Is thereasix,seven,orninesquaretiling? . . . . . . . . 9 1.2 Asolution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 Bouwkamp codes . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Tilingbycubes . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Tilingsby equilateraltriangles . . . . . . . . . . . . . . . . . . 15 1.5 Supplementarymaterial . . . . . . . . . . . . . . . . . . . . . . 16 1.5.1 Squaring thesquare . . . . . . . . . . . . . . . . . . . . 16 1.5.2 Additionalproblems . . . . . . . . . . . . . . . . . . . 19 1.6 Answerstoproblems . . . . . . . . . . . . . . . . . . . . . . . 20 2 Pick’s Rule 29 2.1 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.1 On thegrid . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.2 Polygons . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.1.3 Insideand outside . . . . . . . . . . . . . . . . . . . . 31 2.1.4 Splittingapolygon . . . . . . . . . . . . . . . . . . . . 32 2.1.5 Area ofapolygonalregion . . . . . . . . . . . . . . . . 33 2.1.6 Area ofatriangle . . . . . . . . . . . . . . . . . . . . . 33 2.2 Somemethodsofcalculatingareas . . . . . . . . . . . . . . . . 36 2.2.1 An ancient Greek method . . . . . . . . . . . . . . . . 37 2.2.2 Grid pointcredit—anew fastmethod? . . . . . . . . . . 38 2.3 Pick credit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.1 Experimentationand trial-and-error . . . . . . . . . . . 41 2.3.2 Rectangles and triangles . . . . . . . . . . . . . . . . . 44 2.3.3 Additivity . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4 Pick’sformula . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.1 Trianglessolved . . . . . . . . . . . . . . . . . . . . . 47 2.4.2 ProvingPick’s formulain general . . . . . . . . . . . . 48 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.6 Supplementarymaterial . . . . . . . . . . . . . . . . . . . . . . 50 2.6.1 A bitofhistoricalbackground . . . . . . . . . . . . . . 50 2.6.2 Can’t beusefulthough . . . . . . . . . . . . . . . . . . 51 2.6.3 Primitivetriangulations . . . . . . . . . . . . . . . . . . 51 2.6.4 ReformulatingPick’s theorem . . . . . . . . . . . . . . 54 2.6.5 GamingtheproofofPick’stheorem . . . . . . . . . . . 54 2.6.6 Polygonswithholes . . . . . . . . . . . . . . . . . . . 56 2.6.7 An improvedPick count . . . . . . . . . . . . . . . . . 58 2.6.8 Random grids . . . . . . . . . . . . . . . . . . . . . . . 60 2.6.9 Additionalproblems . . . . . . . . . . . . . . . . . . . 62 2.7 Answerstoproblems . . . . . . . . . . . . . . . . . . . . . . . 63 3 Nim 95 3.1 Care foragameoftic-tac-toe? . . . . . . . . . . . . . . . . . . 96 3.2 Combinatorialgames . . . . . . . . . . . . . . . . . . . . . . . 97 3.2.1 Two-markergames . . . . . . . . . . . . . . . . . . . . 98 3.2.2 Three-marker games . . . . . . . . . . . . . . . . . . . 99 3.2.3 Strategies? . . . . . . . . . . . . . . . . . . . . . . . . 100 3.2.4 Formal strategyfor thetwo-markergame . . . . . . . . 101 3.2.5 Formal strategyfor thethree-marker game . . . . . . . . 102 3.2.6 Balanced and unbalancedpositions . . . . . . . . . . . 102 3.2.7 Balanced positionsinsubtractiongames . . . . . . . . . 106 3.3 Gameofbinary bits . . . . . . . . . . . . . . . . . . . . . . . . 107 3.3.1 A coin game . . . . . . . . . . . . . . . . . . . . . . . 107 3.3.2 A betterway oflookingat thecoingame . . . . . . . . 108 3.3.3 Binary bitsgame . . . . . . . . . . . . . . . . . . . . . 109 3.4 Nim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.4.1 ThemathematicaltheoryofNim . . . . . . . . . . . . . 114 3.4.2 2–pileNim . . . . . . . . . . . . . . . . . . . . . . . . 114 3.4.3 3–pileNim . . . . . . . . . . . . . . . . . . . . . . . . 115 3.4.4 Morethree-pileexperiments . . . . . . . . . . . . . . . 116 3.4.5 Thenear-doublingargument . . . . . . . . . . . . . . . 117 3.5 Nimsolvedby near-doubling . . . . . . . . . . . . . . . . . . . 120 3.5.1 Review ofbinaryarithmetic . . . . . . . . . . . . . . . 121 3.5.2 SimplesolutionforthegameofNim . . . . . . . . . . . 123 3.5.3 Déjàvu? . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.6 Return tomarkergames . . . . . . . . . . . . . . . . . . . . . . 126 3.6.1 Mindthegap . . . . . . . . . . . . . . . . . . . . . . . 127 3.6.2 Strategy forthe6–markergame . . . . . . . . . . . . . 129 3.6.3 Strategy forthe5–markergame . . . . . . . . . . . . . 131 3.6.4 Strategy forallmarkergames . . . . . . . . . . . . . . 131 3.7 MisèreNim . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 3.8 ReverseNim . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.8.1 Howto reverseNim . . . . . . . . . . . . . . . . . . . 133 3.8.2 Howto playReverseMisèreNim . . . . . . . . . . . . 135 3.9 Summaryand Perspectives . . . . . . . . . . . . . . . . . . . . 136 3.10 Supplementarymaterial . . . . . . . . . . . . . . . . . . . . . . 136 3.10.1 AnotheranalysisofthegameofNim . . . . . . . . . . 137 3.10.2 Grundy number . . . . . . . . . . . . . . . . . . . . . . 137 3.10.3 Nim-sumscomputed . . . . . . . . . . . . . . . . . . . 139 3.10.4 Proof oftheSprague-Grundy theorem . . . . . . . . . . 140 3.10.5 Whydoes binaryarithmetickeep comingup? . . . . . . 142 3.10.6 AnothersolutiontoNim . . . . . . . . . . . . . . . . . 143 3.10.7 Playing theNimgamewithnim-sums . . . . . . . . . . 143 3.10.8 ObituarynoticeofCharles L. Bouton . . . . . . . . . . 145 3.11 Answerstoproblems . . . . . . . . . . . . . . . . . . . . . . . 148 4 Links 181 4.1 Linkingcircles . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.1.1 Simple, closedcurves . . . . . . . . . . . . . . . . . . . 183 4.1.2 Shoelace model . . . . . . . . . . . . . . . . . . . . . . 183 4.1.3 Linkingthreecurves . . . . . . . . . . . . . . . . . . . 184 4.1.4 3–1 and3–2 configurations . . . . . . . . . . . . . . . . 185 4.1.5 A 4–3 configuration . . . . . . . . . . . . . . . . . . . 185 4.1.6 Not soeasy? . . . . . . . . . . . . . . . . . . . . . . . 185 4.1.7 Findingtherightnotation . . . . . . . . . . . . . . . . 186 4.2 Algebraicsystems . . . . . . . . . . . . . . . . . . . . . . . . . 188 4.2.1 Somefamiliaralgebraicsystems . . . . . . . . . . . . . 188 4.2.2 Linkingand algebraicsystems . . . . . . . . . . . . . . 189 4.2.3 When are twoobjectsequal? . . . . . . . . . . . . . . . 189 4.2.4 Inversenotation . . . . . . . . . . . . . . . . . . . . . . 190 4.2.5 Thelawsofcombination . . . . . . . . . . . . . . . . . 191 4.2.6 Applyingouralgebrato linkingproblems . . . . . . . . 191 4.3 Return tothe4–3configuration . . . . . . . . . . . . . . . . . . 192 4.3.1 Solvingthe4–3configuration . . . . . . . . . . . . . . 192 4.4 Constructinga5–4 configuration . . . . . . . . . . . . . . . . . 194 4.4.1 Theplan . . . . . . . . . . . . . . . . . . . . . . . . . 194 4.4.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . 194 4.4.3 Howabout a6–5configuration? . . . . . . . . . . . . . 195 4.4.4 Improvingournotationagain . . . . . . . . . . . . . . . 196 4.5 Commutators . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 4.6 Movingon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 4.6.1 Where weare. . . . . . . . . . . . . . . . . . . . . . . 198 4.6.2 Constructinga4–2 configuration. . . . . . . . . . . . . 198 4.6.3 Constructing5–2and 6–2 configurations. . . . . . . . . 199 4.7 Somemoreconstructions. . . . . . . . . . . . . . . . . . . . . . 199 4.8 Thegeneral construction . . . . . . . . . . . . . . . . . . . . . 199 4.8.1 Introducingasubscriptnotation . . . . . . . . . . . . . 200 4.8.2 Product notation . . . . . . . . . . . . . . . . . . . . . 201 4.8.3 Subscriptson subscripts . . . . . . . . . . . . . . . . . 202 4.9 Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 4.9.1 Rigid Motions . . . . . . . . . . . . . . . . . . . . . . 205 4.9.2 Thegroup oflinkingoperations . . . . . . . . . . . . . 206 4.10 Summaryand perspectives . . . . . . . . . . . . . . . . . . . . 207 4.11 AFinal Word . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 4.11.1 As mathematicsdevelops . . . . . . . . . . . . . . . . . 209 4.11.2 A gap? . . . . . . . . . . . . . . . . . . . . . . . . . . 210 4.11.3 Is ourlinkinglanguagemeaningful? . . . . . . . . . . . 212 4.11.4 Avoidknotsand twists . . . . . . . . . . . . . . . . . . 212 4.11.5 Nowwhat? . . . . . . . . . . . . . . . . . . . . . . . . 214 4.12 Answerstoproblems . . . . . . . . . . . . . . . . . . . . . . . 215 A Induction 229 A.1 Quittingsmokingbytheinductivemethod . . . . . . . . . . . . 230 A.2 Provingaformulaby induction . . . . . . . . . . . . . . . . . . 230 A.3 Settingupan inductionproof . . . . . . . . . . . . . . . . . . . 232 A.3.1 Starting theinductionsomewhereelse . . . . . . . . . . 232 A.3.2 Setting upan inductionproof(alternativemethod) . . . 232 A.4 Answerstoproblems . . . . . . . . . . . . . . . . . . . . . . . 235 B Nim, A Gamewitha CompleteMathematical Theory 239 Bibliography 245 Index 247 Figures 1 AndrewWiles . . . . . . . . . . . . . . . . . . . . . . . . . . . -1 1.1 Checkerboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Greek mosaicmadewithsquaretiles. . . . . . . . . . . . . . . 1 1.3 Tilingarectanglewithsquares . . . . . . . . . . . . . . . . . . 2 1.4 Tilingarectanglewithfoursquares? . . . . . . . . . . . . . . . 3 1.5 Whereisthesmallestsquare? . . . . . . . . . . . . . . . . . . . 4 1.6 Whereisthesmallestsquare? (In acorner?) . . . . . . . . . . . 4 1.7 Thesmallestsquarehasa largerneighbor. . . . . . . . . . . . . 5 1.8 Thesmallestsquarehastwo largerneighbors. . . . . . . . . . . 5 1.9 PossibleNeighborofthesmallestsquare? (No.) . . . . . . . . 6 1.10 Twopossibleneighborsofsmallestsquare? (No.) . . . . . . . . 6 1.11 Fourpossibleneighborsofsmallestsquare? (Maybe.) . . . . . 7 1.12 Wetryfora fivesquaretiling. . . . . . . . . . . . . . . . . . . 8 1.13 a,b, c, d, andand s arethelengthsofthesidesofthe“squares.” 8 1.14 Atilingwithsixsquares? . . . . . . . . . . . . . . . . . . . . . 9 1.15 Atilingwithsevensquares? With ninesquares? . . . . . . . . . 10 1.16 Willthisninesquaretilingwork? . . . . . . . . . . . . . . . . . 10 1.17 Atilingwithninesquares! . . . . . . . . . . . . . . . . . . . . 11 1.18 Initialsketch forArthurStone’s eleven-squaretiling. . . . . . . 12 1.19 Can youreconstruct thisfigurefrom thenumbers? . . . . . . . . 13 1.20 Tilingaboxwithcubes. . . . . . . . . . . . . . . . . . . . . . . 14 1.21 Equilateraltriangletiling. . . . . . . . . . . . . . . . . . . . . . 15 1.22 Tutteand Stone. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.23 LadyIsabel’sCasket (froma1902 Englishbookofpuzzles). . . 17 1.24 The“solution”toLady Isabel’sCasket. . . . . . . . . . . . . . 18 1.25 Moreexperimentswithfoursquares. . . . . . . . . . . . . . . . 20 1.26 Wetryfora fivesquaretiling. . . . . . . . . . . . . . . . . . . 21 1.27 Lengthsin termsofsidesof2 adjacent squaresforFigure1.15. . 22 1.28 Somesquarelengthslabeled forFigure1.15. . . . . . . . . . . . 22 1.29 RealizationofArthurStone’seleven-squaretiling. . . . . . . . . 24 1.30 A33 by32 rectangletiledwithninesquares. . . . . . . . . . . . 25 1.31 Atowerofcubesaround K . . . . . . . . . . . . . . . . . . . . 26 1 1.32 S isthesmallesttriangleat thebottomofthetiling. . . . . . . . 27 1.33 T isthesmallesttrianglethat touchesS. . . . . . . . . . . . . . 28 2.1 Whatis thearea oftheregioninsidethepolygon? . . . . . . . . 29 2.2 Apolygononthegrid. . . . . . . . . . . . . . . . . . . . . . . 31 2.3 FindingalinesegmentL thatsplitsthepolygon. . . . . . . . . . 32 2.4 AtriangulationofthepolygoninFigure2.1. . . . . . . . . . . . 33 2.5 Trianglewithonevertexat theorigin. . . . . . . . . . . . . . . 34 2.6 Decompositionforthetrianglein Figure2.5 . . . . . . . . . . . 35 2.7 ThepolygonP anditstriangulation. . . . . . . . . . . . . . . . 37 2.8 Toobigand toosmallapproximations . . . . . . . . . . . . . . 37 2.9 PolygonPwith5 special pointsand theirassociatedsquares . . 39 2.10 A“skinny”triangle. . . . . . . . . . . . . . . . . . . . . . . . . 40 2.11 Someprimitivetriangles. . . . . . . . . . . . . . . . . . . . . . 42 2.12 Polygonswith4 boundarypointsand 6interiorpoints . . . . . . 43 2.13 Computeareas. . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.14 Splittherectangleintotwo triangles. . . . . . . . . . . . . . . . 44 2.15 Addingtogethertwopolygonalregions. . . . . . . . . . . . . . 46 2.16 Atrianglewithahorizontalbase. . . . . . . . . . . . . . . . . . 47 2.17 Trianglesin general position. . . . . . . . . . . . . . . . . . . . 48 2.18 PolygonPwithborderand interiorpointshighlighted. . . . . . 49 2.19 Pick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.20 Aprimitivetriangulationofapolygon. . . . . . . . . . . . . . . 52 2.21 Astartingpositionforthegame. . . . . . . . . . . . . . . . . . 53 2.22 Whatis thearea ofthepolygonwithahole? . . . . . . . . . . . 56 2.23 RectangleP withonerectangularholeH. . . . . . . . . . . . . 57 2.24 Randomlattice. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.25 Triangleonarandomlattice. . . . . . . . . . . . . . . . . . . . 61 2.26 Primitivetriangulationofthetrianglein Figure2.25. . . . . . . 61 2.27 Sketch aprimitivetriangulationofthepolygon. . . . . . . . . . 62 2.28 Archimedes’spuzzle, called theStomachion. . . . . . . . . . . 63 2.29 Firstquadrant unobstructedviewfrom (0,0). . . . . . . . . . . 64 2.30 Thesix linesegmentsthatsplitthepolygon. . . . . . . . . . . . 66 2.31 AnothertriangulationofP. . . . . . . . . . . . . . . . . . . . . 68 2.32 Obtuse-angledtriangleT withahorizontalbase. . . . . . . . . . 76 2.33 Acute-angledtriangleT witha horizontalbase. . . . . . . . . . 76 2.34 Triangleswhosebaseisneitherhorizontalnorvertical. . . . . . 77 2.35 Whatis thearea insideP? . . . . . . . . . . . . . . . . . . . . . 78 2.36 FindingthelinesegmentL. . . . . . . . . . . . . . . . . . . . . 79 2.37 Afinal positionin thisgame. . . . . . . . . . . . . . . . . . . . 80 2.38 Polygonwithtwoholes. . . . . . . . . . . . . . . . . . . . . . 86 2.39 Severalprimitivetriangulationsofthepolygon. . . . . . . . . . 90 2.40 Archimedes’spuzzle, called theStomachion. . . . . . . . . . . 91 3.1 AgameofNim. . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.2 Care foragame? . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.3 Agamewithtwomarkers at 4and 9. . . . . . . . . . . . . . . . 98 3.4 Theendingpositionin agamewithtwo markers. . . . . . . . . 99 3.5 Agamewiththreemarkersat 4, 9, and12. . . . . . . . . . . . . 100 3.6 Theendingpositionin agamewiththreemarkers. . . . . . . . . 100 3.7 Positionin thecoin game. . . . . . . . . . . . . . . . . . . . . . 108 3.8 Thesamepositioninthecoin gamewithbinarybits. . . . . . . 109 3.9 Amoveina5 3 gameofbinarybits. . . . . . . . . . . . . . . 110 × 3.10 Whichpositionsarebalanced? . . . . . . . . . . . . . . . . . . 110 3.11 Whichpositionsarebalanced? . . . . . . . . . . . . . . . . . . 111 3.12 Whichpositionsarebalanced? . . . . . . . . . . . . . . . . . . 111 3.13 AgameofNim. . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.14 Coinsset upforagameofKayles. . . . . . . . . . . . . . . . . 115 3.15 Theposition(1,2,5,7,11)displayedinbinary. . . . . . . . . . 125 3.16 Themove(1,2,5,7,11) (1,2,5,7,1)displayedin binary.. . . 126 3.17 Gapsin the3–markergamewithmarkers at 4, 9, and 13. . . . 127 3.18 Gapsin the4–markergamewithmarkers at 5, 10, 20, and 30. . 128 3.19 Thethreekey gapsinthe6–markergame. . . . . . . . . . . . . 129 3.20 The6–markergamewithmarkers at 5, 7, 12, 15, 20, and 24. . 130 3.21 The5–markergamewithmarkers at 5, 10, 14, 20and 22. . . . 131 3.22 An8–markergame. . . . . . . . . . . . . . . . . . . . . . . . . 132 3.23 LastYear atMarienbad. . . . . . . . . . . . . . . . . . . . . . 133 3.24 AReverseNimgamewith4 piles. . . . . . . . . . . . . . . . . 134 3.25 Twoperspectiveson ReverseNimgamewith4 piles. . . . . . . 134 3.26 Playingtheassociated7–pileNimgame. . . . . . . . . . . . . . 134 3.27 Afterthebalancing move. . . . . . . . . . . . . . . . . . . . . . 135 3.28 Anadditiontablefor . . . . . . . . . . . . . . . . . . . . . . . 140 ⊕ 3.29 Thegameof18 isidenticalto tic-tac-toe . . . . . . . . . . . . . 149 3.30 Thecard gameisidenticalto tic-tac-toe . . . . . . . . . . . . . 149 3.31 Balancingnumbersfor 2–pileNim. . . . . . . . . . . . . . . . . 151 3.32 Apositionin thecard game. . . . . . . . . . . . . . . . . . . . 156 3.33 Anodd position.. . . . . . . . . . . . . . . . . . . . . . . . . . 159 3.34 Howtochangean oddpositionto an evenposition. . . . . . . . 159 3.35 Apositionin thenumbersgame. . . . . . . . . . . . . . . . . . 161 3.36 Playingthenumbersgame. . . . . . . . . . . . . . . . . . . . . 161 3.37 Apositionin theword game. . . . . . . . . . . . . . . . . . . . 162 3.38 Balancingthat samepositionin theword game. . . . . . . . . . 163 3.39 Asequenceofmovesin agameofKayles. . . . . . . . . . . . . 165 3.40 Thesamesequenceofmovesina gameofKayles. . . . . . . . . 166 3.41 Positionsinthegame(1,2,3). . . . . . . . . . . . . . . . . . . 167 3.42 Sprague-Grundynumbersfor 2–pileNim. . . . . . . . . . . . . 175 4.1 Borromean rings(threeinterlinkedcircles). . . . . . . . . . . . 181 4.2 BallantineAle . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.3 Fourcircles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 4.4 Simplecurves,closed curvesornot? . . . . . . . . . . . . . . . 183 4.5 Equipmentformakingmodels. . . . . . . . . . . . . . . . . . . 184 4.6 ColeandEvawithmodel. . . . . . . . . . . . . . . . . . . . . . 187 4.7 AB: FirstrotatethetriangleT, thentranslate. . . . . . . . . . . 205 4.8 BA:First translatethetriangleT, thenrotate. . . . . . . . . . . 206 4.9 A“slipsoff”C. . . . . . . . . . . . . . . . . . . . . . . . . . . 210 4.10 Projectionsofsquareson thex-axis. . . . . . . . . . . . . . . . 211 4.11 Thiscurvecan betransformed intoacircle. . . . . . . . . . . . 213 4.12 Curvewith “ear-like”twists. . . . . . . . . . . . . . . . . . . . 213 4.13 IsC=AA 1? . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 − 4.14 Thethreecurves arelinkedin pairs. . . . . . . . . . . . . . . . 215 4.15 Ashoelacemodelofa3–1 configuration. . . . . . . . . . . . . 216 4.16 Start withtwoseparated circles forProblem 166. . . . . . . . . 216 4.17 Weavethecurvethroughthecircles. . . . . . . . . . . . . . . . 217 4.18 Cutaway thecircleontheright. . . . . . . . . . . . . . . . . . 218 4.19 Cutaway thecircleontheleft. . . . . . . . . . . . . . . . . . . 218 4.20 AbBABb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 4.21 ABBbAb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.