ISBN 978-1-59973-654-9 VOLUME 1, 2020 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO THE MADIS OF CHINESE ACADEMY OF SCIENCES AND ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS, USA March, 2020 Vol.1, 2020 ISBN 978-1-59973-654-9 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO (www.mathcombin.com) The Madis of Chinese Academy of Sciences and Academy of Mathematical Combinatorics & Applications, USA March, 2020 Aims and Scope: The mathematical combinatorics is a subject that applying combinatorial notiontoallmathematicsandallsciencesforunderstandingtherealityofthingsintheuniverse, motivatedbyCC ConjectureofDr.LinfanMAOonmathematicalsciences. TheInternational J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly, which publishes original research papers and survey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences. Topics in detail to be covered are: Mathematical combinatorics; Smarandachemulti-spacesandSmarandachegeometrieswithapplicationstoothersciences; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Differential Geometry; Geometry on manifolds; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Mathematical theory on gravitational fields and parallel universes; Applications of Combinatorics to mathematics and theoretical physics. Generally,papersonapplicationsofcombinatoricstoothermathematicsandothersciences are welcome by this journal. It is also available from the below international databases: Serials Group/Editorial Department of EBSCO Publishing 10 Estes St. Ipswich, MA 01938-2106, USA Tel.: (978) 356-6500, Ext. 2262 Fax: (978) 356-9371 http://www.ebsco.com/home/printsubs/priceproj.asp and Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning 27500 Drake Rd. Farmington Hills, MI 48331-3535, USA Tel.: (248) 699-4253, ext. 1326; 1-800-347-GALE Fax: (248) 699-8075 http://www.gale.com IndexingandReviews: MathematicalReviews(USA),ZentralblattMath(Germany),Refer- ativnyi Zhurnal (Russia), Mathematika (Russia), Directory of Open Access (DoAJ), EBSCO (USA), International Scientific Indexing (ISI, impact factor 2.012), Institute for Scientific In- formation (PA, USA), Library of Congress Subject Headings (USA). Subscription A subscription can be ordered by an email directly to Linfan Mao The Editor-in-Chief of International Journal of Mathematical Combinatorics Chinese Academy of Mathematics and System Science Beijing, 100190, P.R.China, and also the President of Academy of Mathematical Combinatorics & Applications (AMCA), Colorado, USA Email: [email protected] Price: US$48.00 Editorial Board (4th) Editor-in-Chief Linfan MAO Shaofei Du ChineseAcademyofMathematicsandSystem Capital Normal University, P.R.China Science, P.R.China Email: [email protected] and Xiaodong Hu Academy of Mathematical Combinatorics & ChineseAcademyofMathematicsandSystem Applications, Colorado, USA Science, P.R.China Email: [email protected] Email: [email protected] Deputy Editor-in-Chief Yuanqiu Huang Hunan Normal University, P.R.China Guohua Song Email: [email protected] Beijing University of Civil Engineering and H.Iseri Architecture, P.R.China Mansfield University, USA Email: [email protected] Email: hiseri@mnsfld.edu Editors Xueliang Li Nankai University, P.R.China Arindam Bhattacharyya Email: [email protected] Jadavpur University, India Guodong Liu Email: [email protected] Huizhou University Said Broumi Email: [email protected] Hassan II University Mohammedia W.B.Vasantha Kandasamy Hay El Baraka Ben M’sik Casablanca Indian Institute of Technology, India B.P.7951 Morocco Email: [email protected] Junliang Cai Ion Patrascu Beijing Normal University, P.R.China Fratii Buzesti National College Email: [email protected] Craiova Romania Yanxun Chang Han Ren Beijing Jiaotong University, P.R.China East China Normal University, P.R.China Email: [email protected] Email: [email protected] Jingan Cui Ovidiu-Ilie Sandru Beijing University of Civil Engineering and Politechnica University of Bucharest Architecture, P.R.China Romania Email: [email protected] ii MathematicalCombinatorics(InternationalBookSeries) Mingyao Xu Peking University, P.R.China Email: [email protected] Guiying Yan ChineseAcademyofMathematicsandSystem Science, P.R.China Email: [email protected] Y. Zhang Department of Computer Science Georgia State University, Atlanta, USA Famous Words: We know nothing of what will happen in future, but by the analogy of past experience. By Abraham Lincoln, an American president Math.Combin.Book Ser. Vol.1(2020), 01-09 On k-Type Slant Helices Due to Bishop Frame in Euclidean 4-Space E4 Yasin U¨nlu¨tu¨rk1, Hatice Tozak2 and Cumali Ekici3 1. DepartmentofMathematics,FacultyofArtandScience,KırklareliUniversity,39100,Kırklareli,Turkey 2. Du¨ndarUc¸arVocationalandTechnicalAnatolianHighSchool,34212,I˙stanbul,Turkey 3. Eski¸sehirOsmangaziUniversity,FacultyofScienceandLetters,DepartmentofMathematicsand ComputerScience,TR-26040,Eskisehir,Turkey E-mail: [email protected],[email protected],[email protected] Abstract: In this work, we study k−type (k ∈ {0,1,2,3}) slant helices with non-zero BishopcurvaturefunctionsduetoBishopframeinE4. Generalhelixisa0−typeslanthelix within the notation of this study. We characterize all of slant helices in terms of Bishop curvatures in E4. Key Words: Bishop frame, regular curves, general helix, slant helix, Euclidean 4-space. AMS(2010): 53A04. §1. Introduction Inthelocaldifferentialgeometryofspacecurves,itiswell-knownthatageneralhelixisacurve whose tangent makes a constant angle with a non-zero constant vector field (the axis of the helix). Moreover,thenecessaryandsufficientconditionforacurveisageneralhelixifandonly iftheratioofthecurvatureandthetorsionofthatcurveisconstant. Aslanthelixisdefinedas acurvewhoseprincipalnormalvectormakesaconstantanglewithafixeddirectionbyIzumiya and Takeuchi in E3 [7]. Some characterizations of a slant helix are investigated in [9]. Ali and TurguthavegeneralizedtheslanthelixtoEuclideann-spaceEn andhavegivensomeproperties for a non-degenerate slant helix [2]. O¨ztu¨rk et.al. have considered the focal representation and some properties of focal curves with their curvatures of k-slant helices in Em+1 [11]. Further, some characterizations of slant helices in different spaces such as Minkowski and Galilean are studied [12, 13, 14, 16]. Most of the study of curves are done by using Frenet-Serret frame in classical differential geometryinEuclideanspace. In[4],BishopdefinedanalternativeoverFrenetframeforacurve and called it Bishop frame. The advantage of Bishop frame is well-defined when the curve has a vanishing second derivative in 3-dimensional Euclidean space E3 unlike Frenet frame. Also, Bishop frame is used in many applications such as engineering, computer aided design, DNA analysis etc. After defining this useful alternative frame, many studies have been done by 1ReceivedAugust23,2019,AcceptedMarch2,2020. 2 YasinU¨nlu¨tu¨rk,HaticeTozakandCumaliEkici mathematicians using it [3, 8, 15]. O¨z¸celik et. al. have been introduced the parallel transport frame of the curve in 4-dimensional Euclidean space E4 [10]. ThepresentstudyaimstodeterminethecharacterizeallofslanthelicesintermsofBishop curvatures in E4 with the help of the literature. §2. Preliminaries Here, the basic definitions and theorems for the theory of curves in Euclidean 4-space E4 are given for the next section (A more complete elementary treatment can be found in [5], [6]). The standard flat metric in Euclidean 4-space E4 is given by (cid:104) , (cid:105)=dx2+dx2+dx2+dx2, 1 2 3 4 where (x ,x ,x ,x ) is a rectangular coordinate system of Euclidean 4-space E4. The norm of 1 2 3 4 anarbitraryvectora∈E4 isgivenby(cid:107)a(cid:107)=(cid:112)(cid:104)a,a(cid:105). Thecurveαiscalledanunitspeedcurve if a velocity vector v of α satisfies (cid:107)v(cid:107)=1. For vectors v,w ∈ E4, it is said to be orthogonal if and only if (cid:104)v,w(cid:105)=0. Let α=α(s) be a regular curve in Euclidean 4-space E4. If the tangent vector field of this curve forms a constant angle with a constant vector field U, then this curve is called a general helix or an inclined curve. Denoteby{T,N,B,E}themovingFrenet-Serretframealongthecurve α inthespace E4. For an arbitrary curve α in Euclidean 4-space E4, the following Frenet-Serret formulae is given with respect to the first curvature κ, the second curvature τ and the third curvature σ in [6] T(cid:48) 0 κ 0 0 T N(cid:48) −κ 0 τ 0 N = , B(cid:48) 0 −τ 0 σ B E(cid:48) 0 0 −σ 0 E where T,N,B and E are called the tangent, the principal normal, the first and the second binormal vectors of the curve α, respectively. Theorem 2.1([14]) Let α = α(t) be an arbitrary curve in Euclidean 4-space E4 with above Frenet-Serret equations. Frenet-Serret apparatus of α can be written as follows: α(cid:48) T = , (2.1) (cid:107)α(cid:48)(cid:107) (cid:107)α(cid:48)(cid:107)2α(cid:48)(cid:48)−(cid:104)α(cid:48),α(cid:48)(cid:48)(cid:105)α(cid:48) N = (cid:13) (cid:13), (2.2) (cid:13)(cid:107)α(cid:48)(cid:107)2α(cid:48)(cid:48)−(cid:104)α(cid:48),α(cid:48)(cid:48)(cid:105)α(cid:48)(cid:13) (cid:13) (cid:13) B =µN ∧T ∧B , (2.3) 2 Onk-TypeSlantHelicesDuetoBishopFrameinEuclidean4-SpaceE4 3 T ∧N ∧α(cid:48)(cid:48)(cid:48) E =µ , (2.4) (cid:107)T ∧N ∧α(cid:48)(cid:48)(cid:48)(cid:107) (cid:13) (cid:13) (cid:13)(cid:107)α(cid:48)(cid:107)2α(cid:48)(cid:48)−(cid:104)α(cid:48),α(cid:48)(cid:48)(cid:105)α(cid:48)(cid:13) κ= (cid:13) (cid:13) (2.5) (cid:107)α(cid:48)(cid:107)4 (cid:107)T ∧N ∧α(cid:48)(cid:48)(cid:48)(cid:107)(cid:107)α(cid:48)(cid:107) τ = (cid:13) (cid:13) (2.6) (cid:13)(cid:107)α(cid:48)(cid:107)2α(cid:48)(cid:48)−g(α(cid:48),α(cid:48)(cid:48))α(cid:48)(cid:13) (cid:13) (cid:13) and (cid:10)α(IV),E(cid:11) σ = , (2.7) (cid:107)T ∧N ∧α(cid:48)(cid:48)(cid:48)(cid:107)(cid:107)α(cid:48)(cid:107) where µ is taken −1 or +1 to make +1 the determinant of the matrix [T,N,B,E]. Bishop frame is also referred to as parallel transport that is an orthonormal frame formed by transporting in parallel each component of the frame. The parallel transport is formed with tangent vector and any convenient arbitrary basis for the remainder of the frame (for details, see [4], [10]). Then, the relations between Frenet-Serret frame and parallel transport frame for the curve α:I ⊂R→E4 are given as follows: T(s)=T(s), N(s)=cosθ(s)cosψ(s)M +(−cosφ(s)sinψ(s)+sinφ(s)sinθ(s)cosψ(s))M 1 2 +(sinφ(s)sinψ(s)+cosφ(s)sinθ(s)cosψ(s))M , 3 B(s)=cosθ(s)sinψ(s)M +(cosφ(s)cosψ(s)+sinφ(s)sinθ(s)sinψ(s))M 1 2 +(−sinφ(s)cosψ(s)+cosφ(s)sinθ(s)sinψ(s))M , 3 E(s)=−sinθ(s)M +sinφ(s)cosθ(s)M +cosφ(s)cosθ(s)M . 1 2 3 The parallel transport frame equations are expressed as [10] T(cid:48) 0 k k k T 1 2 3 M(cid:48) −k 0 0 0 M 1 = 1 1 , (2.8) M2(cid:48) −k2 0 0 0 M2 M(cid:48) −k 0 0 0 M 3 3 3 where k ,k ,k are curvature functions according to parallel transport frame of the curve α, 1 2 3 and their expression as follows: k =κcosθ(s)cosψ(s), 1 k =κ(−cosφ(s)sinψ(s)+sinφ(s)sinθ(s)cosψ(s)), 2 k =κ(sinφ(s)sinψ(s)+cosφ(s)sinθ(s)cosψ(s)), 3 4 YasinU¨nlu¨tu¨rk,HaticeTozakandCumaliEkici where √ √ σ σ2−θ(cid:48)2 σ2−θ(cid:48)2 θ(cid:48) = √ , ψ(cid:48) =−τ −σ√ , φ(cid:48) =− , κ2+τ2 κ2+τ2 cosθ and Frenet curvature functions are given as follows: (cid:112) θ(cid:48) κ(s)= k2+k2+k2, τ(s)=−ψ(cid:48)+φ(cid:48)sinθ, σ(s)= , 1 2 3 sinψ and φ(cid:48)cosθ+θ(cid:48)cotψ =0, in terms of the invariants of parallel transport frame. §3. On k-Type Slant Helices Due to Bishop Frame in Euclidean 4-Space E4 Definition 3.1 Let α = α(s) be a curve parametrized by arc-length with {T,M ,M ,M } a 1 2 3 BishopframeinE4.Ifthereexistsanon-zeroconstantvectorfieldU inE4 suchthat(cid:104)M ,U(cid:105)=(cid:54) 0 k is a constant for all s ∈ I, where M = T, then α is said to be k−type (k ∈ {0,1,2,3}) slant 0 helix, and U is called axis of α. Theorem 3.2 Let α=α(s) be a unit speed curve with non zero Bishop curvatures k ,k , and 1 2 k due to Bishop frame in E4. There is no 0−type slant helix (general helix) due to Bishop 3 frame in E4. Proof Let α=α(s) be 0−type slant helix in E4 and the axis of the curve be U. Then, we have that (cid:104)T,U(cid:105)=c (s)=constant (3.1) 1 alongthecurveα.Differentiating(3.1)withrespecttosandusingBishopframe,weknowthat k (cid:104)M ,U(cid:105)+k (cid:104)M ,U(cid:105)+k (cid:104)M ,U(cid:105)=0, 1 1 2 2 3 3 which implies that the unit vector U lies on the subspace spanned by {T} and therefore, it can be written as U =c (s)T. (3.2) 1 Differentiation of (3.2) gives c k M +c (s)k M +c (s)k M =0. 1 1 1 1 2 2 1 3 3 Since the vectors {M ,M ,M } are linearly independent, we have c =0 which yields 1 2 3 1 U =0. (3.3) Sincetheresult(3.3)contradictswiththedefinitionofU,weclaimthatthereisno0−type slant helix (general helix) due to Bishop frame in E4. (cid:3) Onk-TypeSlantHelicesDuetoBishopFrameinEuclidean4-SpaceE4 5 Theorem 3.3 Let α=α(s) be a unit speed curve with non zero Bishop curvatures k ,k , and 1 2 k due to Bishop frame in E4. Then α is a 1−type slant helix if and only if the function 3 k k −c 1 −c 2 (3.4) 0k 1k 3 3 is a constant, and c =const. and c =const. 0 1 Proof Letα=α(s)be1−typeslanthelixinE4 andU beafixednon-zerodirection. Then we have (cid:104)M ,U(cid:105)=c (s),c (s)∈R (3.5) 1 0 0 along the curve α. Using (3.5) and Bishop frame formulae, we have −k (cid:104)T,U(cid:105)=0, 1 which implies that the unit vector U lies on the subspace spanned by {M ,M ,M } and it can 1 2 3 be written as U =c (s)M +a(s)M +b(s)M . (3.6) 0 1 2 3 Differentiation of (3.6) gives (−c k −ak −bk )T +a(cid:48)M +b(cid:48)M =0. 0 1 2 3 2 3 Since the vectors {T,M ,M } are linearly independent, we have 2 3 −c k −ak −bk =0, 0 1 2 3 a(cid:48) =0, (3.7) b(cid:48) =0. From (3.7), we obtain k k a=c , b=−c 1 −c 2, 1 0k 1k 3 3 where c is constant. 1 Conversely,if(3.4)holds,wecanfindafixednonzerovectorU satisfying(cid:104)M ,U(cid:105)=constant. 1 We consider the axis as (cid:18) (cid:19) k k U =M +M − 1 + 2 M . (3.8) 1 2 k k 3 3 3 Differentiating U with the help of (3.4) gives U(cid:48) = 0. This means that U is a constant vector. As a result, α is a 1−type slant helix in E4. (cid:3) Using Theorem 3.3, we have the following result. Corollary 3.4 Let α = α(s) be a 1−type slant helix with non zero Bishop curvatures k ,k , 1 2