ISBN 978-1-59973-337-1 VOLUME 1, 2015 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO THE MADIS OF CHINESE ACADEMY OF SCIENCES AND ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS March, 2015 Vol.1, 2015 ISBN 978-1-59973-337-1 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO The Madis of Chinese Academy of Sciences and Academy of Mathematical Combinatorics & Applications March, 2015 Aims and Scope: The Mathematical Combinatorics (International Book Series) is a fullyrefereedinternationalbookseries,quarterlycomprising100-150pagesapprox. pervolume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences. Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces, , etc.. Smarandache geometries; ··· Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Differential Geometry; Geometry on manifolds; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combi- natorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematicaltheoryonparalleluniverses;OtherapplicationsofSmarandachemulti-spaceand combinatorics. Generally, papers on mathematics with its applications not including in above topics are also welcome. It is also available from the below international databases: Serials Group/EditorialDepartment of EBSCO Publishing 10 Estes St. Ipswich, MA 01938-2106,USA Tel.: (978) 356-6500,Ext. 2262 Fax: (978) 356-9371 http://www.ebsco.com/home/printsubs/priceproj.asp and Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning 27500 Drake Rd. Farmington Hills, MI 48331-3535,USA Tel.: (248) 699-4253,ext. 1326; 1-800-347-GALEFax: (248) 699-8075 http://www.gale.com Indexingand Reviews: MathematicalReviews(USA),ZentralblattMath(Germany),Refer- ativnyi Zhurnal (Russia), Mathematika (Russia), Directory of Open Access (DoAJ), Interna- tional Statistical Institute (ISI), International Scientific Indexing (ISI, impact factor 1.416), Institute for Scientific Information (PA, USA), Library of Congress Subject Headings (USA). Subscription A subscription can be ordered by an email directly to Linfan Mao The Editor-in-Chief of International Journal of Mathematical Combinatorics Chinese Academy of Mathematics and System Science Beijing, 100190, P.R.China Email: [email protected] Price: US$48.00 Editorial Board (3nd) Editor-in-Chief Shaofei Du Capital Normal University, P.R.China Linfan MAO Email: [email protected] ChineseAcademyofMathematicsandSystem Science, P.R.China Baizhou He and Beijing University of Civil Engineering and Academy of Mathematical Combinatorics & Architecture, P.R.China Applications, USA Email: [email protected] Email: [email protected] Xiaodong Hu ChineseAcademyofMathematicsandSystem Deputy Editor-in-Chief Science, P.R.China Email: [email protected] Guohua Song Beijing University of Civil Engineering and Yuanqiu Huang Architecture, P.R.China Hunan Normal University, P.R.China Email: [email protected] Email: [email protected] H.Iseri Editors Mansfield University, USA Email: hiseri@mnsfld.edu S.Bhattacharya Xueliang Li Deakin University Nankai University, P.R.China Geelong Campus at Waurn Ponds Email: [email protected] Australia Email: [email protected] Liu Huizhou University Said Broumi Email: [email protected] Hassan II University Mohammedia Hay El Baraka Ben M’sik Casablanca W.B.Vasantha Kandasamy B.P.7951 Morocco Indian Institute of Technology, India Email: [email protected] Junliang Cai Beijing Normal University, P.R.China Ion Patrascu Email: [email protected] Fratii Buzesti National College Craiova Romania Yanxun Chang Beijing Jiaotong University, P.R.China Han Ren Email: [email protected] East China Normal University, P.R.China Email: [email protected] Jingan Cui Beijing University of Civil Engineering and Ovidiu-Ilie Sandru Architecture, P.R.China Politechnica University of Bucharest Email: [email protected] Romania ii InternationalJournalofMathematicalCombinatorics Mingyao Xu Peking University, P.R.China Y. Zhang Email: [email protected] Department of Computer Science Guiying Yan Georgia State University, Atlanta, USA ChineseAcademyofMathematicsandSystem Science, P.R.China Email: [email protected] Famous Words: Nothing in life is to be feared. It is only to be understood. By Marie Curie, a Polish and naturalized-French physicist and chemist. Math.Combin.Book Ser. Vol.1(2015), 1-13 N∗C∗ Smarandache Curves of Mannheim Curve Couple − According to Frenet Frame Su¨leyman S¸ENYURT and Abdussamet C¸ALIS¸KAN (FacultyofArtsandSciences,DepartmentofMathematics,OrduUniversity,52100,Ordu/Turkey) E-mail: [email protected] Abstract: Inthispaper,whentheunitDarbouxvectorofthepartnercurveofMannheim curvearetakenasthepositionvectors,thecurvatureandthetorsion ofSmarandachecurve are calculated. These values are expressed depending upon the Mannheim curve. Besides, we illustrate example of our main results. Key Words: Mannheim curve, Mannheim partner curve, Smarandache Curves, Frenet invariants. AMS(2010): 53A04 §1. Introduction A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve ([12]). Special Smarandache curves have been studied by some authors . Melih TurgutandSu¨ha Yılmaz studied a specialcase ofsuchcurvesand calledit Smaran- dacheTB curvesinthespaceE4([12]). AhmadT.AlistudiedsomespecialSmarandachecurves 2 1 in the Euclidean space. He studied Frenet-Serret invariants of a special case ([1]). Muhammed C¸etin , Yılmaz Tunc¸er and Kemal Karacaninvestigated special Smarandache curves according to Bishop frame in Euclidean 3-Space and they gave some differential goematric properties of Smarandachecurves,alsotheyfoundthecentersoftheosculatingspheresandcurvaturespheres of Smarandache curves ([5]). S¸enyurt and C¸alı¸skan investigatedspecial Smarandachecurves in terms of Sabban frame of spherical indicatrix curves and they gave some characterization of Smarandache curves ([4]). O¨zcan Bekta¸s and Salim Yu¨ce studied some special Smarandache curvesaccordingtoDarbouxFrameinE3 ([2]). NurtenBayrak,O¨zcanBekta¸sandSalimYu¨ce studied some special Smarandache curves in E13 [3]. Kemal Tas.k¨opru¨, Murat Tosun studied special Smarandache curves according to Sabban frame on S2 ([11]). In this paper, special Smarandache curve belonging to α Mannheim partner curve such ∗ as N C drawn by Frenet frame are defined and some related results are given. ∗ ∗ 1ReceivedSeptember 8,2014, AcceptedFebruary12,2015. 2 Su¨leymanS¸ENYURTandAbdussametC¸ALIS¸KAN §2. Preliminaries The Euclidean 3-space E3 be inner product given by , =x2+x3+x2 h i 1 2 3 where (x ,x ,x ) E3. Let α : I E3 be a unit speed curve denote by T,N,B the 1 2 3 ∈ → { } moving Frenet frame . For an arbitrary curve α E3, with first and second curvature, κ and ∈ τ respectively, the Frenet formulae is given by ([6], [9]) T =κN ′ N = κT +τB (2.1) ′ B = −τN. ′ − For any unit speed α:I E3, the vector W is called Darboux vector defined by → W =τ(s)T(s)+κ(s)+B(s). 1 If consider the normalization of the Darboux C = W, we have W k k κ(s) τ(s) cosϕ= , sinϕ= , W W k k k k C =sinϕT(s)+cosϕB(s) (2.2) where ∠(W,B) = ϕ. Let α : I E3 and α : I E3 be the C2 class differentiable unit ∗ → → − speed two curves and let T(s),N(s),B(s) and T (s),N (s),B (s) be the Frenet frames of ∗ ∗ ∗ { } { } the curves α and α , respectively. If the principal normal vector N of the curve α is linearly ∗ dependent on the binormalvector B of the curve α , then (α) is called a Mannheim curve and ∗ (α ) a Mannheim partner curve of (α). The pair (α,α ) is said to be Mannheim pair ([7], [8]). ∗ ∗ The relations between the Frenet frames T(s),N(s),B(s) and T (s),N (s),B (s) are as ∗ ∗ ∗ { } { } follows: T =cosθT sinθB ∗ − N =sinθT +cosθB (2.3) ∗ B =N ∗ ds cosθ = ∗ ds (2.4) ds sinθ =λτ∗ ds∗ . where ∠(T,T∗)=θ ([8]). Theorem 2.1([7]) The distance between corresponding points of the Mannheim partner curves in E3 is constant. N∗C∗ SmarandacheCurvesofMannheimCurveCoupleAccordingtoFrenetFrame 3 − Theorem2.2 Let(α,α )beaMannheimpaircurvesinE3. Forthecurvaturesandthetorsions ∗ of the Mannheim curve pair (α,α ) we have, ∗ ds κ=τ∗sinθ ∗ ds (2.5) ds τ = τ∗cosθ ∗ − ds and dθ κ κ = =θ ∗ ′ ds λτ√κ2+τ2 ∗ (2.6) ds τ =(κsinθ τcosθ) ∗ ∗ − ds Theorem 2.3 Let (α,α ) be a Mannheim pair curves in E3. For the torsions τ of the ∗ ∗ Mannheim partner curve α we have ∗ κ τ = ∗ λτ Theorem 2.4([10]) Let (α,α ) be a Mannheim pair curves in E3. For the vector C is the ∗ ∗ direction of the Mannheim partner curve α we have ∗ θ ′ 1 W C∗ = C+ k k N (2.7) θ 2 θ 2 ′ ′ 1+ 1+ s W s W (cid:16)k k(cid:17) (cid:16)k k(cid:17) where the vector C is the direction of the Darboux vector W of the Mannheim curve α. §3. N C Smarandache Curves of Mannheim Curve Couple According to ∗ ∗ − Frenet Frame Let (α,α ) be a Mannheim pair curves in E3 and T N B be the Frenet frame of the ∗ ∗ ∗ ∗ { } Mannheim partner curve α at α (s). In this case, N C - Smarandache curve can be defined ∗ ∗ ∗ ∗ by 1 β (s)= (N +C ). (3.1) 1 ∗ ∗ √2 Solving the above equation by substitution of N and C from (2.3) and (2.7), we obtain ∗ ∗ cosθ W +sinθ θ 2+ W 2 T +θ N + cosθ θ 2+ W 2 sinθ W B β (s)= k k ′ k k ′ ′ k k − k k . 1 q q (cid:0) (cid:1) θ 2+ W(cid:0)2 (cid:1) ′ k k q (3.2) 4 Su¨leymanS¸ENYURTandAbdussametC¸ALIS¸KAN The derivative of this equation with respect to s is as follows, Tβ1(s) = (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′cosθ− θλ′τκkcWoskθ(cid:21)T +(cid:20)λκτ −(cid:16)√θ′k2W+kkWk2(cid:17)′kWθ′k(cid:21)N 2 vuu (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′√θ′2+θ′kWk2(cid:21) + κ(θλ′2τ+kWkWkk2)"λτkκWk −2(cid:16)√θ′k2W+kkWk2(cid:17)′θ1′# u u u t θ′κsinθ kWk ′sinθ B + (cid:20)λτkWk −(cid:16)√θ′2+kWk2(cid:17) (cid:21) · 2 vuu (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′√θ′2+θ′kWk2(cid:21) + κ(θλ′2τ+kWkWkk2)"λτkκWk −2(cid:16)√θ′k2W+kkWk2(cid:17)′θ1′# (3.3) t In order to determine the first curvature and the principal normal of the curve β (s), we 1 formalize √2 (r¯ cosθ+r¯ sinθ)T +r¯N +( r¯ sinθ+r¯ cosθ)B 1 2 3 1 2 − h i T (s)= β′1 2 2 (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′√θ′2+θ′kWk2(cid:21) + κ(θλ′2τ+kkWWkk2)"λτkκWk −2(cid:16)√θ′k2W+kkWk2(cid:17)′θ1′#! where r¯ = 2 κ 2 kWk ′ θ′2+kWk2 ′ θ′ 1 (cid:16)λτ(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)!(cid:16) θ′2+kWk2(cid:17) q q θ′κ kWk ′ θ′2+kWk2 kWk ′ θ′2+kWk2 ′ −(cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q θ′ 2 κ kWk ′ θ′2+kWk2 kWk ′ (cid:16) θ′2+kWk2(cid:17) −(cid:16)λτ(cid:17)"(cid:16) θ′2+kWk2(cid:17) q θ′ # (cid:20)(cid:16) θ′2+kWk2(cid:17) q q q θ′2+kWk2 ′ kWk θ′ kWk ′ q θ′ (cid:21)!(cid:16) θ′2+kWk2(cid:17)(cid:16) θ′2+kWk2(cid:17)−(cid:20)(cid:16) θ′2+kWk2(cid:17) q q q θ′2+kWk2 4 kWk κ 2 θ′κ ′ κ 2 kWk ′ q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17)−(cid:16)λτ(cid:17) (cid:16)λτkWk(cid:17) −(cid:16)λτ(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q q N∗C∗ SmarandacheCurvesofMannheimCurveCoupleAccordingtoFrenetFrame 5 − θ′2+kWk2 2 kWk +2 θ′κ kWk ′ θ′2+kWk2 3 ×q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17) (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q 3 kWk θ′ +2 κ kWk ′ θ′2+kWk2 (cid:16) θ′2+kWk2(cid:17)(cid:16) θ′2+kWk2(cid:17) (cid:16)λτ(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q q 2 kWk 2 θ′κ 2 kWk ′ θ′2+kWk2 kWk (cid:16) θ′2+kWk2(cid:17) −(cid:16)λτkWk(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17) q q q −2κ∗(cid:16)λτθk′Wκ k(cid:17)′(cid:20)(cid:16) θ′2k+WkkWk2(cid:17)′qθ′2+θ′kWk2(cid:21)(cid:16) θ′2+θ′kWk2(cid:17)−2(cid:16)λτθk′Wκ k(cid:17)′ q q (cid:16)λκτ(cid:17)(cid:20)(cid:16) θ′2k+WkkWk2(cid:17)′qθ′2+θ′kWk2(cid:21)(cid:16) θ′2kW+kkWk2(cid:17)−τ∗(cid:16)λκτ(cid:17)′ q q kWk ′ θ′2+kWk2 θ′ + θ′κ ′ kWk ′ (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:16) θ′2+kWk2(cid:17) (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q q q θ′2+kWk2 θ′ 2 θ′κ ′ kWk ′ θ′2+kWk2 2 q θ′ (cid:21)(cid:16) θ′2+kWk2(cid:17) −(cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q + κ ′ kWk ′ θ′2+kWk2 2 kWk θ′ (cid:16)λτ(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17)(cid:16) θ′2+kWk2(cid:17) q q q θ′κ kWk ′ θ′2+kWk2 kWk ′ θ′2+kWk2 ′ (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)! q q + θ′κ κ κ ′ θ′κ κ kWk ′ θ′2+kWk2 ′ (cid:16)λτkWk(cid:17)(cid:16)λτ(cid:17)(cid:16)λτ(cid:17) −(cid:16)λτkWk(cid:17)(cid:16)λτ(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)! q kWk kWk ′ θ′2+kWk2 κ ′ θ′κ kWk , (cid:16) θ′2+kWk2(cid:17)−(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:16)λτ(cid:17)(cid:16)λτkWk(cid:17)(cid:16) θ′2+kWk2(cid:17) q q q 3 r¯ = θ′κ kWk ′ θ′2+kWk2 θ′ +3 θ′κ 3 2 (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17) (cid:16)λτkWk(cid:17) q q kWk ′ θ′2+kWk2 θ′ +3 κ 2 θ′κ (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:16) θ′2+kWk2(cid:17) (cid:0)λτ(cid:1) (cid:16)λτkWk(cid:17) q q