ebook img

Mathematical Combinatorics. An International Book Series, vol. 1, 2015 PDF

2015·1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Combinatorics. An International Book Series, vol. 1, 2015

ISBN 978-1-59973-337-1 VOLUME 1, 2015 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO THE MADIS OF CHINESE ACADEMY OF SCIENCES AND ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS March, 2015 Vol.1, 2015 ISBN 978-1-59973-337-1 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO The Madis of Chinese Academy of Sciences and Academy of Mathematical Combinatorics & Applications March, 2015 Aims and Scope: The Mathematical Combinatorics (International Book Series) is a fullyrefereedinternationalbookseries,quarterlycomprising100-150pagesapprox. pervolume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences. Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces, , etc.. Smarandache geometries; ··· Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Differential Geometry; Geometry on manifolds; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combi- natorics to mathematics and theoretical physics; Mathematical theory on gravitational fields; Mathematicaltheoryonparalleluniverses;OtherapplicationsofSmarandachemulti-spaceand combinatorics. Generally, papers on mathematics with its applications not including in above topics are also welcome. It is also available from the below international databases: Serials Group/EditorialDepartment of EBSCO Publishing 10 Estes St. Ipswich, MA 01938-2106,USA Tel.: (978) 356-6500,Ext. 2262 Fax: (978) 356-9371 http://www.ebsco.com/home/printsubs/priceproj.asp and Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning 27500 Drake Rd. Farmington Hills, MI 48331-3535,USA Tel.: (248) 699-4253,ext. 1326; 1-800-347-GALEFax: (248) 699-8075 http://www.gale.com Indexingand Reviews: MathematicalReviews(USA),ZentralblattMath(Germany),Refer- ativnyi Zhurnal (Russia), Mathematika (Russia), Directory of Open Access (DoAJ), Interna- tional Statistical Institute (ISI), International Scientific Indexing (ISI, impact factor 1.416), Institute for Scientific Information (PA, USA), Library of Congress Subject Headings (USA). Subscription A subscription can be ordered by an email directly to Linfan Mao The Editor-in-Chief of International Journal of Mathematical Combinatorics Chinese Academy of Mathematics and System Science Beijing, 100190, P.R.China Email: [email protected] Price: US$48.00 Editorial Board (3nd) Editor-in-Chief Shaofei Du Capital Normal University, P.R.China Linfan MAO Email: [email protected] ChineseAcademyofMathematicsandSystem Science, P.R.China Baizhou He and Beijing University of Civil Engineering and Academy of Mathematical Combinatorics & Architecture, P.R.China Applications, USA Email: [email protected] Email: [email protected] Xiaodong Hu ChineseAcademyofMathematicsandSystem Deputy Editor-in-Chief Science, P.R.China Email: [email protected] Guohua Song Beijing University of Civil Engineering and Yuanqiu Huang Architecture, P.R.China Hunan Normal University, P.R.China Email: [email protected] Email: [email protected] H.Iseri Editors Mansfield University, USA Email: hiseri@mnsfld.edu S.Bhattacharya Xueliang Li Deakin University Nankai University, P.R.China Geelong Campus at Waurn Ponds Email: [email protected] Australia Email: [email protected] Liu Huizhou University Said Broumi Email: [email protected] Hassan II University Mohammedia Hay El Baraka Ben M’sik Casablanca W.B.Vasantha Kandasamy B.P.7951 Morocco Indian Institute of Technology, India Email: [email protected] Junliang Cai Beijing Normal University, P.R.China Ion Patrascu Email: [email protected] Fratii Buzesti National College Craiova Romania Yanxun Chang Beijing Jiaotong University, P.R.China Han Ren Email: [email protected] East China Normal University, P.R.China Email: [email protected] Jingan Cui Beijing University of Civil Engineering and Ovidiu-Ilie Sandru Architecture, P.R.China Politechnica University of Bucharest Email: [email protected] Romania ii InternationalJournalofMathematicalCombinatorics Mingyao Xu Peking University, P.R.China Y. Zhang Email: [email protected] Department of Computer Science Guiying Yan Georgia State University, Atlanta, USA ChineseAcademyofMathematicsandSystem Science, P.R.China Email: [email protected] Famous Words: Nothing in life is to be feared. It is only to be understood. By Marie Curie, a Polish and naturalized-French physicist and chemist. Math.Combin.Book Ser. Vol.1(2015), 1-13 N∗C∗ Smarandache Curves of Mannheim Curve Couple − According to Frenet Frame Su¨leyman S¸ENYURT and Abdussamet C¸ALIS¸KAN (FacultyofArtsandSciences,DepartmentofMathematics,OrduUniversity,52100,Ordu/Turkey) E-mail: [email protected] Abstract: Inthispaper,whentheunitDarbouxvectorofthepartnercurveofMannheim curvearetakenasthepositionvectors,thecurvatureandthetorsion ofSmarandachecurve are calculated. These values are expressed depending upon the Mannheim curve. Besides, we illustrate example of our main results. Key Words: Mannheim curve, Mannheim partner curve, Smarandache Curves, Frenet invariants. AMS(2010): 53A04 §1. Introduction A regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is called a Smarandache curve ([12]). Special Smarandache curves have been studied by some authors . Melih TurgutandSu¨ha Yılmaz studied a specialcase ofsuchcurvesand calledit Smaran- dacheTB curvesinthespaceE4([12]). AhmadT.AlistudiedsomespecialSmarandachecurves 2 1 in the Euclidean space. He studied Frenet-Serret invariants of a special case ([1]). Muhammed C¸etin , Yılmaz Tunc¸er and Kemal Karacaninvestigated special Smarandache curves according to Bishop frame in Euclidean 3-Space and they gave some differential goematric properties of Smarandachecurves,alsotheyfoundthecentersoftheosculatingspheresandcurvaturespheres of Smarandache curves ([5]). S¸enyurt and C¸alı¸skan investigatedspecial Smarandachecurves in terms of Sabban frame of spherical indicatrix curves and they gave some characterization of Smarandache curves ([4]). O¨zcan Bekta¸s and Salim Yu¨ce studied some special Smarandache curvesaccordingtoDarbouxFrameinE3 ([2]). NurtenBayrak,O¨zcanBekta¸sandSalimYu¨ce studied some special Smarandache curves in E13 [3]. Kemal Tas.k¨opru¨, Murat Tosun studied special Smarandache curves according to Sabban frame on S2 ([11]). In this paper, special Smarandache curve belonging to α Mannheim partner curve such ∗ as N C drawn by Frenet frame are defined and some related results are given. ∗ ∗ 1ReceivedSeptember 8,2014, AcceptedFebruary12,2015. 2 Su¨leymanS¸ENYURTandAbdussametC¸ALIS¸KAN §2. Preliminaries The Euclidean 3-space E3 be inner product given by , =x2+x3+x2 h i 1 2 3 where (x ,x ,x ) E3. Let α : I E3 be a unit speed curve denote by T,N,B the 1 2 3 ∈ → { } moving Frenet frame . For an arbitrary curve α E3, with first and second curvature, κ and ∈ τ respectively, the Frenet formulae is given by ([6], [9]) T =κN ′ N = κT +τB (2.1) ′ B = −τN. ′ −  For any unit speed α:I E3, the vector W is called Darboux vector defined by → W =τ(s)T(s)+κ(s)+B(s). 1 If consider the normalization of the Darboux C = W, we have W k k κ(s) τ(s) cosϕ= , sinϕ= , W W k k k k C =sinϕT(s)+cosϕB(s) (2.2) where ∠(W,B) = ϕ. Let α : I E3 and α : I E3 be the C2 class differentiable unit ∗ → → − speed two curves and let T(s),N(s),B(s) and T (s),N (s),B (s) be the Frenet frames of ∗ ∗ ∗ { } { } the curves α and α , respectively. If the principal normal vector N of the curve α is linearly ∗ dependent on the binormalvector B of the curve α , then (α) is called a Mannheim curve and ∗ (α ) a Mannheim partner curve of (α). The pair (α,α ) is said to be Mannheim pair ([7], [8]). ∗ ∗ The relations between the Frenet frames T(s),N(s),B(s) and T (s),N (s),B (s) are as ∗ ∗ ∗ { } { } follows: T =cosθT sinθB ∗ − N =sinθT +cosθB (2.3) ∗ B =N ∗  ds cosθ = ∗ ds (2.4)  ds sinθ =λτ∗ ds∗ . where ∠(T,T∗)=θ ([8]).  Theorem 2.1([7]) The distance between corresponding points of the Mannheim partner curves in E3 is constant. N∗C∗ SmarandacheCurvesofMannheimCurveCoupleAccordingtoFrenetFrame 3 − Theorem2.2 Let(α,α )beaMannheimpaircurvesinE3. Forthecurvaturesandthetorsions ∗ of the Mannheim curve pair (α,α ) we have, ∗ ds κ=τ∗sinθ ∗ ds  (2.5)  ds τ = τ∗cosθ ∗ − ds  and dθ κ κ = =θ ∗ ′ ds λτ√κ2+τ2  ∗ (2.6)  ds τ =(κsinθ τcosθ) ∗ ∗ − ds  Theorem 2.3 Let (α,α ) be a Mannheim pair curves in E3. For the torsions τ of the ∗ ∗ Mannheim partner curve α we have ∗ κ τ = ∗ λτ Theorem 2.4([10]) Let (α,α ) be a Mannheim pair curves in E3. For the vector C is the ∗ ∗ direction of the Mannheim partner curve α we have ∗ θ ′ 1 W C∗ = C+ k k N (2.7) θ 2 θ 2 ′ ′ 1+ 1+ s W s W (cid:16)k k(cid:17) (cid:16)k k(cid:17) where the vector C is the direction of the Darboux vector W of the Mannheim curve α. §3. N C Smarandache Curves of Mannheim Curve Couple According to ∗ ∗ − Frenet Frame Let (α,α ) be a Mannheim pair curves in E3 and T N B be the Frenet frame of the ∗ ∗ ∗ ∗ { } Mannheim partner curve α at α (s). In this case, N C - Smarandache curve can be defined ∗ ∗ ∗ ∗ by 1 β (s)= (N +C ). (3.1) 1 ∗ ∗ √2 Solving the above equation by substitution of N and C from (2.3) and (2.7), we obtain ∗ ∗ cosθ W +sinθ θ 2+ W 2 T +θ N + cosθ θ 2+ W 2 sinθ W B β (s)= k k ′ k k ′ ′ k k − k k . 1 q q (cid:0) (cid:1) θ 2+ W(cid:0)2 (cid:1) ′ k k q (3.2) 4 Su¨leymanS¸ENYURTandAbdussametC¸ALIS¸KAN The derivative of this equation with respect to s is as follows, Tβ1(s) = (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′cosθ− θλ′τκkcWoskθ(cid:21)T +(cid:20)λκτ −(cid:16)√θ′k2W+kkWk2(cid:17)′kWθ′k(cid:21)N 2 vuu (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′√θ′2+θ′kWk2(cid:21) + κ(θλ′2τ+kWkWkk2)"λτkκWk −2(cid:16)√θ′k2W+kkWk2(cid:17)′θ1′# u u u t θ′κsinθ kWk ′sinθ B + (cid:20)λτkWk −(cid:16)√θ′2+kWk2(cid:17) (cid:21) · 2 vuu (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′√θ′2+θ′kWk2(cid:21) + κ(θλ′2τ+kWkWkk2)"λτkκWk −2(cid:16)√θ′k2W+kkWk2(cid:17)′θ1′# (3.3) t In order to determine the first curvature and the principal normal of the curve β (s), we 1 formalize √2 (r¯ cosθ+r¯ sinθ)T +r¯N +( r¯ sinθ+r¯ cosθ)B 1 2 3 1 2 − h i T (s)= β′1 2 2 (cid:20)(cid:16)√θ′k2W+kkWk2(cid:17)′√θ′2+θ′kWk2(cid:21) + κ(θλ′2τ+kkWWkk2)"λτkκWk −2(cid:16)√θ′k2W+kkWk2(cid:17)′θ1′#! where r¯ = 2 κ 2 kWk ′ θ′2+kWk2 ′ θ′ 1 (cid:16)λτ(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)!(cid:16) θ′2+kWk2(cid:17) q q θ′κ kWk ′ θ′2+kWk2 kWk ′ θ′2+kWk2 ′ −(cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q θ′ 2 κ kWk ′ θ′2+kWk2 kWk ′ (cid:16) θ′2+kWk2(cid:17) −(cid:16)λτ(cid:17)"(cid:16) θ′2+kWk2(cid:17) q θ′ # (cid:20)(cid:16) θ′2+kWk2(cid:17) q q q θ′2+kWk2 ′ kWk θ′ kWk ′ q θ′ (cid:21)!(cid:16) θ′2+kWk2(cid:17)(cid:16) θ′2+kWk2(cid:17)−(cid:20)(cid:16) θ′2+kWk2(cid:17) q q q θ′2+kWk2 4 kWk κ 2 θ′κ ′ κ 2 kWk ′ q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17)−(cid:16)λτ(cid:17) (cid:16)λτkWk(cid:17) −(cid:16)λτ(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q q N∗C∗ SmarandacheCurvesofMannheimCurveCoupleAccordingtoFrenetFrame 5 − θ′2+kWk2 2 kWk +2 θ′κ kWk ′ θ′2+kWk2 3 ×q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17) (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q 3 kWk θ′ +2 κ kWk ′ θ′2+kWk2 (cid:16) θ′2+kWk2(cid:17)(cid:16) θ′2+kWk2(cid:17) (cid:16)λτ(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q q 2 kWk 2 θ′κ 2 kWk ′ θ′2+kWk2 kWk (cid:16) θ′2+kWk2(cid:17) −(cid:16)λτkWk(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17) q q q −2κ∗(cid:16)λτθk′Wκ k(cid:17)′(cid:20)(cid:16) θ′2k+WkkWk2(cid:17)′qθ′2+θ′kWk2(cid:21)(cid:16) θ′2+θ′kWk2(cid:17)−2(cid:16)λτθk′Wκ k(cid:17)′ q q (cid:16)λκτ(cid:17)(cid:20)(cid:16) θ′2k+WkkWk2(cid:17)′qθ′2+θ′kWk2(cid:21)(cid:16) θ′2kW+kkWk2(cid:17)−τ∗(cid:16)λκτ(cid:17)′ q q kWk ′ θ′2+kWk2 θ′ + θ′κ ′ kWk ′ (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:16) θ′2+kWk2(cid:17) (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q q q θ′2+kWk2 θ′ 2 θ′κ ′ kWk ′ θ′2+kWk2 2 q θ′ (cid:21)(cid:16) θ′2+kWk2(cid:17) −(cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) q q + κ ′ kWk ′ θ′2+kWk2 2 kWk θ′ (cid:16)λτ(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17)(cid:16) θ′2+kWk2(cid:17) q q q θ′κ kWk ′ θ′2+kWk2 kWk ′ θ′2+kWk2 ′ (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)! q q + θ′κ κ κ ′ θ′κ κ kWk ′ θ′2+kWk2 ′ (cid:16)λτkWk(cid:17)(cid:16)λτ(cid:17)(cid:16)λτ(cid:17) −(cid:16)λτkWk(cid:17)(cid:16)λτ(cid:17) (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)! q kWk kWk ′ θ′2+kWk2 κ ′ θ′κ kWk , (cid:16) θ′2+kWk2(cid:17)−(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:16)λτ(cid:17)(cid:16)λτkWk(cid:17)(cid:16) θ′2+kWk2(cid:17) q q q 3 r¯ = θ′κ kWk ′ θ′2+kWk2 θ′ +3 θ′κ 3 2 (cid:16)λτkWk(cid:17)(cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21) (cid:16) θ′2+kWk2(cid:17) (cid:16)λτkWk(cid:17) q q kWk ′ θ′2+kWk2 θ′ +3 κ 2 θ′κ (cid:20)(cid:16) θ′2+kWk2(cid:17) q θ′ (cid:21)(cid:16) θ′2+kWk2(cid:17) (cid:0)λτ(cid:1) (cid:16)λτkWk(cid:17) q q

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.