ebook img

Mathematical Combinatorics. An International Book Series, vol. 1, 2011 PDF

2011·1.2 MB·English
by  MaoLinfan.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Combinatorics. An International Book Series, vol. 1, 2011

ISBN 978-1-59973-146-9 VOLUME 1, 2011 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO THE MADIS OF CHINESE ACADEMY OF SCIENCES March, 2011 Vol.1, 2011 ISBN 978-1-59973-146-9 Mathematical Combinatorics (International Book Series) Edited By Linfan MAO The Madis of Chinese Academy of Sciences March, 2011 Aims and Scope: The Mathematical Combinatorics (International Book Series) (ISBN978-1-59973-146-9)isafullyrefereedinternationalbookseries,sponsoredbytheMADIS of Chinese Academy of Sciences and published in USA quarterly comprising 100-150 pages approx. per volume, which publishes original research papers and survey articles in all as- pects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences. Topics in detail to be covered are: Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces, , etc.. Smarandache geometries; ··· Differential Geometry; Geometry on manifolds; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Applications of Smarandache multi-spaces to theoretical physics; Applications of Combi- natorics to mathematics and theoretical physics; Mathematical theory on gravitationalfields; Mathematical theory on parallel universes; Other applications of Smarandache multi-space and combinatorics. Generally, papers on mathematics with its applications not including in above topics are also welcome. It is also available from the below international databases: Serials Group/EditorialDepartment of EBSCO Publishing 10 Estes St. Ipswich, MA 01938-2106,USA Tel.: (978) 356-6500,Ext. 2262 Fax: (978) 356-9371 http://www.ebsco.com/home/printsubs/priceproj.asp and Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning 27500 Drake Rd. Farmington Hills, MI 48331-3535,USA Tel.: (248) 699-4253,ext. 1326; 1-800-347-GALEFax: (248) 699-8075 http://www.gale.com IndexingandReviews: MathematicalReviews(USA),ZentralblattfurMathematik(Germany), ReferativnyiZhurnal(Russia), Mathematika (Russia), Computing Review (USA), Institute for Scientific Information (PA, USA), Library of Congress Subject Headings (USA). Subscription A subscription can be ordered by a mail or an email directly to Linfan Mao The Editor-in-Chief of International Journal of Mathematical Combinatorics Chinese Academy of Mathematics and System Science Beijing, 100190, P.R.China Email: [email protected] Price: US$48.00 Editorial Board H.Iseri Mansfield University, USA Email: hiseri@mnsfld.edu Editor-in-Chief M.Khoshnevisan Linfan MAO School of Accounting and Finance, Chinese AcademyofMathematicsandSystem Griffith University, Australia Science, P.R.China Email: [email protected] Xueliang Li Nankai University, P.R.China Email: [email protected] Editors Han Ren East China Normal University, P.R.China S.Bhattacharya Email: [email protected] Deakin University Geelong Campus at Waurn Ponds W.B.Vasantha Kandasamy Indian Institute of Technology, India Australia Email: [email protected] Email: [email protected] Mingyao Xu An Chang Peking University, P.R.China Fuzhou University, P.R.China Email: [email protected] Email: [email protected] Guiying Yan Junliang Cai Chinese AcademyofMathematicsandSystem Beijing Normal University, P.R.China Science, P.R.China Email: [email protected] Email: [email protected] Yanxun Chang Y. Zhang Beijing Jiaotong University, P.R.China Department of Computer Science Email: [email protected] Georgia State University, Atlanta, USA Shaofei Du Capital Normal University, P.R.China Email: [email protected] Florentin Popescu and Marian Popescu University of Craiova Craiova, Romania Xiaodong Hu Chinese AcademyofMathematicsandSystem Science, P.R.China Email: [email protected] Yuanqiu Huang Hunan Normal University, P.R.China Email: [email protected] Achievement provides the only real pleasure in life. By Thomas Edison, an American inventor. Math.Combin.Book Ser. Vol.1 (2011), 01-19 Lucas Graceful Labeling for Some Graphs M.A.Perumal1, S.Navaneethakrishnan2 and A.Nagarajan2 1. DepartmentofMathematics,NationalEngineeringCollege, K.R.Nagar,Kovilpatti,TamilNadu,India 2. DepartmentofMathematics,V.O.CCollege,Thoothukudi,TamilNadu,India. Email: [email protected],[email protected],[email protected] Abstract: A Smarandache-Fibonacci triple is a sequence S(n), n 0 such that ≥ S(n) = S(n 1) + S(n 2), where S(n) is the Smarandache function for integers − − n 0. Clearly, it is a generalization of Fibonacci sequence and Lucas sequence. Let ≥ G be a (p,q)-graph and S(n)n 0 a Smarandache-Fibonacci triple. An bijection { | ≥ } f: V(G) S(0),S(1),S(2),...,S(q) is said to be a super Smarandache-Fibonacci grace- →{ } ful graph if the induced edge labeling f∗(uv) = f(u) f(v) is a bijection onto the set | − | S(1),S(2),...,S(q) . Particularly, if S(n),n 0 is just the Lucas sequence, such a label- { } ≥ ing f :V(G) l0,l1,l2, ,la (a ǫN) is said to beLucas graceful labelingif theinduced →{ ··· } edge labeling f1(uv) = f(u) f(v) is a bijection on to the set l1,l2, ,lq . Then G is | − | { ··· } called Lucas graceful graph if it admits Lucas graceful labeling. Also an injective function f :V(G) l0,l1,l2, ,lq issaid tobestrongLucasgracefullabelingiftheinducededge →{ ··· } labeling f1(uv) = f(u) f(v) is a bijection onto the set l1,l2,...,lq . G is called strong | − | { } Lucas graceful graph if it admits strong Lucas graceful labeling. In this paper, we show that some graphs namely Pn, Pn+−e, Sm,n, Fm@Pn, Cm@Pn, K1,n⊙2Pm, C3@2Pn and Cn@K1,2 admitLucasgraceful labeling andsome graphsnamely K1,n and Fn admitstrong Lucas graceful labeling. KeyWords: Smarandache-Fibonaccitriple,superSmarandache-Fibonaccigracefulgraph, Lucas graceful labeling, strong Lucas graceful labeling. AMS(2010): 05C78 §1. Introduction By a graph, we mean a finite undirected graph without loops or multiple edges. A path of length n is denoted by P . A cycle of length n is denoted by C .G+ is a graph obtained from n n thegraphGbyattachingapendantvertextoeachvertexofG. Theconceptofgracefullabeling was introduced by Rosa [3] in 1967. A function f is a graceful labeling of a graph G with q edges if f is an injection from 1ReceivedNovember11,2010. Accepted February10,2011. 2 M.A.Perumal,S.NavaneethakrishnanandA.Nagarajan the vertices of G to the set 1,2,3, ,q such that when each edge uv is assigned the la- { ··· } bel f(u) f(v), the resulting edge labels are distinct. The notion of Fibonacci graceful | − | labeling was introduced by K.M.Kathiresan and S.Amutha [4]. We call a function, a Fi- bonacci graceful labeling of a graph G with q edges if f is an injection from the vertices of G to the set 0,1,2,...,F , where F is the qth Fibonacci number of the Fibonacci series q q { } F = 1,F = 2,F = 3,F = 5,..., and each edge uv is assigned the label f(u) f(v). Based 1 2 3 4 | − | on the above concepts we define the following. Let G be a (p,q) -graph. An injective function f : V(G) l ,l ,l , ,l , (a ǫ N), 0 1 2 a → { ··· } is said to be Lucas graceful labeling if an induced edge labeling f (uv) = f(u) f(v) is a 1 | − | bijection onto the set l ,l , ,l with the assumption of l = 0,l = 1,l = 3,l = 4,l = 1 2 q 0 1 2 3 4 { ··· } 7,l =11, ,. ThenGiscalledLucasgracefulgraphifitadmitsLucasgracefullabeling. Also 5 ··· aninjectivefunctionf :V(G) l ,l ,l , ,l issaidtobestrongLucasgracefullabelingif 0 1 2 q →{ ··· } theinducededgelabelingf (uv)= f(u) f(v) isabijectionontotheset l ,l , ,l . Then 1 1 2 q | − | { ··· } GiscalledstrongLucasgracefulgraphifitadmitsstrongLucasgracefullabeling. Inthispaper, weshowthatsomegraphsnamelyP , P+ e, S , F @P , C @P , K 2P , C @2P n n − m,n m n m n 1,n⊙ m 3 n andC @K admitLucasgracefullabelingandsomegraphsnamelyK andF admitstrong n 1,2 1,n n Lucas graceful labeling. Generally, let S(n), n 0 with S(n) = S(n 1)+S(n 2) be a ≥ − − Smarandache-Fibonacci triple, where S(n) is the Smarandache function for integers n 0. An ≥ bijection f: V(G) S(0),S(1),S(2),...,S(q) is said to be a super Smarandache-Fibonacci → { } graceful graph if the induced edge labeling f (uv) = f(u) f(v) is a bijection onto the set ∗ | − | S(1),S(2), ,S(q) . { ··· } §2. Lucas graceful graphs In this section, we show that some well known graphs are Lucas graceful graphs. Definition 2.1 Let G be a (p,q) -graph. An injective function f :V(G) l ,l ,l , ,l , , 0 1 2 a →{ ··· } (a ǫ N) is said tobe Lucas graceful labeling if an induced edge labeling f (uv)= f(u) f(v) is 1 | − | a bijection onto the set l ,l , ,l with the assumption of l = 0,l =1,l =3,l = 4,l = 1 2 q 0 1 2 3 4 { ··· } 7,l =11, ,. Then G is called Lucas graceful graph if it admits Lucas graceful labeling. 5 ··· Theorem 2.2 The path P is a Lucas graceful graph. n Proof Let P be apath oflengthn having(n+1)verticesnamely v ,v ,v , ,v ,v . n 1 2 3 n n+1 ··· Now, V(P ) = n+1 and E(P ) = n. Define f : V(P ) l ,l ,l , ,l , ,a ǫ N by n n n 0 1 2 a | | | | → { ··· } f(u )=l ,1 i n. Next, we claim that the edge labels are distinct. Let i i+1 ≤ ≤ E = f (v v ):1 i n = f(v ) f(v ) :1 i n 1 i i+1 i i+1 { ≤ ≤ } {| − | ≤ ≤ } = f(v ) f(v ) , f(v ) f(v ) , , f(v ) f(v ) , 1 2 2 3 n n+1 {| − | | − | ··· | − | } = l l , l l , , l l = l ,l , ,l . 2 3 3 4 n+1 n+2 1 2 n {| − | | − | ··· | − |} { ··· } So, the edges of P receive the distinct labels. Therefore, f is a Lucas graceful labeling. n Hence, the path P is a Lucas graceful graph. (cid:3) n LucasGracefulLabelingforSomeGraphs 3 Example 2.3 The graph P admits Lucas graceful Labeling, such as those shown in Fig.1 6 following. l l l l l l l 2 3 4 5 6 7 8 l l l l l l 1 2 3 4 5 6 Fig.1 Theorem 2.4 P+ e,(n 3) is a Lucas graceful graph. n − ≥ Proof Let G=P+ e with V(G)= u ,u , ,u v ,v , ,v be the vertex n − { 1 2 ··· n+1} { 2 3 ··· n+1} set of G. So, V(G) = 2n+1 and E(G) = 2n. Define f :V(G) l ,l ,l , ,l , ,a ǫ N, | | | | S → { 0 1 2 ··· a } by f(u )=l ,1 i n+1 and f(v )=l ,2 j n+1. i 2i 1 j 2(j 1) − ≤ ≤ − ≤ ≤ We claim that the edge labels are distinct. Let E = f (u u ):1 i n = f(u ) f(u ) :1 i n 1 1 i i+1 i i+1 { ≤ ≤ } {| − | ≤ ≤ } = f(u ) f(u ), f(u ) f(u ), , f(u ) f(u ) 1 2 2 3 n n+1 {| − | | − | ··· | − |} = l l , l l , , l l = l ,l , ,l , 1 3 3 5 2n 1 2n+1 2 4 2n {| − | | − | ··· | − − |} { ··· } E = f (u v ):2 i, j n 2 1 i j { ≤ ≤ } = f(u ) f(v ), f(u ) f(v ), , f(u ) f(v ) 2 2 3 3 n+1 n+1 {| − | | − | ··· | − |} = l l , l l , , l l = l ,l , ,l . 3 2 5 4 2n+1 2n 1 3 2n 1 {| − | | − | ··· | − |} { ··· − } Now, E =E E = l ,l , ,l ,l . So, the edges of G receive the distinct labels. 1 2 1 3 2n 1 2n ∪ { ··· − } Therefore, f is a Lucas graceful labeling. Hence, P+ e,(n 3) is a Lucas graceful graph. (cid:3) n − ≥ Example 2.5 The graphP+ e admits Lucas gracefullabeling, suchasthsoe shownin Fig.2. 8 − l l l l l l l l l 1 3 5 7 9 11 13 15 17 l l l l l l l l 2 4 6 8 10 12 14 16 l l l l l l l l 1 3 5 7 9 11 13 15 l l l l l l l l 2 4 6 8 10 12 14 16 Fig.2 Definition 2.6([2]) Denote by S such a star with n spokes in which each spoke is a path of m,n length m. Theorem 2.7 The graph S is a Lucas graceful graph when m is odd and n 1,2(mod 3). m,n ≡ 4 M.A.Perumal,S.NavaneethakrishnanandA.Nagarajan Proof Let G=S and let V(G)= ui :1 i m and 1 j n be the vertex set of m,n j ≤ ≤ ≤ ≤ S . Then V(G) = mn+1 and E(G) = mn. Define f : V(G) l ,l ,l , ,l , ,a ǫ N m,n | | | |(cid:8) → { 0(cid:9)1 2 ··· a } by f(u )=l for i=1,2, ,m 2 and i 1(mod 2); 0 0 ··· − ≡ f ui =l ,1 j n for i=1,2, ,m 1 and i 0(mod 2); j n(i−1)+2j−1 ≤ ≤ ··· n− ≡ f(cid:0)uij(cid:1)=lni+2−2j,1≤j ≤n and for s=1,2,··· , 3, f(cid:0)um(cid:1) =l ,3s 2 j 3s. j n(m−1)+2(j+1)−3s − ≤ ≤ We clai(cid:0)m th(cid:1)at the edge labels are distinct. Let m m E = f u ui = f(u ) f ui 1 1 0 1 0 − 1 i 1([im=1od 2)(cid:8) (cid:0) (cid:1)(cid:9) i 1(i[m=1od 2)(cid:8)(cid:12) (cid:0) (cid:1)(cid:12)(cid:9) ≡ ≡ (cid:12) (cid:12) m m = l l = l 0 n(i 1)+1 n(i 1)+1 − − − i 1([im=1od 2)(cid:8)(cid:12) (cid:12)(cid:9) i 1([im=1od 2)(cid:8) (cid:9) ≡ (cid:12) (cid:12) ≡ = l ,l ,l , ,l , 1 2n+1 4n+1 n(m 1)+1 ··· − (cid:8) (cid:9) m 1 m 1 − − E = f u ui = f(u ) f ui 2 1 0 1 0 − 1 i 1(i[m=1od 2)(cid:8) (cid:0) (cid:1)(cid:9) i 1([im=1od 2)(cid:8)(cid:12) (cid:0) (cid:1)(cid:12)(cid:9) ≡ ≡ (cid:12) (cid:12) m 1 m 1 − − = l l = l = l ,l , ,l 0 ni ni 2n 4n n(m 1) {| − |} { } ··· − i 1(i[m=1od 2) i 1(i[m=1od 2) (cid:8) (cid:9) ≡ ≡ m 2 − E = f uiui :1 j n 1 3 1 j j+1 ≤ ≤ − i 1(i[m=1od 2)(cid:8) (cid:0) (cid:1) (cid:9) ≡ m 2 − = f ui f ui :1 j n 1 j − j+1 ≤ ≤ − i 1(i[m=1od 2)(cid:8)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) (cid:9) ≡ (cid:12) (cid:12) m 2 − = l l :1 j n 1 n(i 1)+2j 1 n(i 1)+2j+1 − − − − ≤ ≤ − i 1(i[m=1od 2)(cid:8)(cid:12) (cid:12) (cid:9) ≡ (cid:12) (cid:12) m 2 − = l :1 j n 1 n(i 1)+2j − ≤ ≤ − i 1(i[m=1od 2)(cid:8) (cid:9) ≡ m 2 − = l ,l , ,:l n(i 1)+2 n(i 1)+4 n(i 1)+2(n 1) − − ··· − − i 1(i[m=1od 2)(cid:8) (cid:9) ≡ = l ,l ,...,l l ,l , ,l 2 2n+2 n(m 3)+2 4 2n+4 n(m 3)+4 − ∪ ··· − ∪··· (cid:8) l2n 2,l4n 2,...,ln(m(cid:9)3)+(cid:8)2n 2 , (cid:9) ∪ − − − − (cid:8) (cid:9) LucasGracefulLabelingforSomeGraphs 5 m 2 − E = f ui ui :1 j n 1 4 1 j j+1 ≤ ≤ − i 1([im=1od 2)(cid:8) (cid:0) (cid:1) (cid:9) ≡ m 2 − = f ui f ui :1 j n 1 j − j+1 ≤ ≤ − i 1([im=1od 2)(cid:8)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) (cid:9) ≡ (cid:12) (cid:12) m 2 − = l l :1 j n 1 ni 2j+2 ni 2j {| − − − | ≤ ≤ − } i 1([im=1od 2) ≡ m 2 − = l :1 j n 1 ni 2j+1 { − ≤ ≤ − } i 1([im=1od 2) ≡ m 2 − = l ,l , ,l ni 1 ni 3 ni (2n 3) − − ··· − − i 1([im=1od 2)(cid:8) (cid:9) ≡ = l ,l , ,l ,l ,l , ,l ,l , ,l . 2n 1 2n 3 3 4n 1 4n 3 2n+3 n(m 1) 1 n(m 1) (2n 3) − − ··· − − ··· − − ··· − − − (cid:8) (cid:9) For n 1(mod 3), let ≡ n−1 3 E = f um um :3s 2 j 3s 1 5 1 j j+1 − ≤ ≤ − s=1 [ (cid:8) (cid:0) (cid:1) (cid:9) n−1 3 = f um f um :3s 2 j 3s 1 j − j+1 − ≤ ≤ − s=1 [ (cid:8)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) (cid:9) n−1 (cid:12) (cid:12) 3 = l l :3s 2 j 3s 1 n(m 1)+2j 3s+2 n(m 1)+2j 3s+4 − − − − − − ≤ ≤ − s=1 [ (cid:8)(cid:12) (cid:12) (cid:9) n−1 (cid:12) (cid:12) n−1 3 3 = l :3s 2 j 3s 1 = l ,l n(m 1)+2j 3s+2 n(m 1)+3s 1 n(m 1)+3s+1 − − − ≤ ≤ − − − − s=1 s=1 [ (cid:8) (cid:9) [ (cid:8) (cid:9) = l ,l ,l ,l , ,l ,l . n(m 1)+2 n(m 1)+4 n(m 1)+5 n(m 1)+7 n m 2 mn − − − − ··· − (cid:8) (cid:9) We find the edge labeling between the end vertex of sth loop and the starting vertex of n 1 (s+1)th loop and s=1,2, , − . Let ··· 3 n−1 n−1 3 3 E = f um um = f(um) f um 6 1 3s 3s+1 3s − 3s+1 s=1 s=1 [ (cid:8)(cid:12) (cid:0) (cid:1)(cid:12)(cid:9) [ (cid:8)(cid:12) (cid:0) (cid:1)(cid:12)(cid:9) = f(u(cid:12)m) f(um) ,(cid:12)f(um) f(cid:12)(um) , f(um) f(cid:12)(um) , , f um f(um) | 3 − 4 | | 6 − 7 | | 9 − 10 | ··· n−1 − n = (cid:8) ln(m 1)+5 ln(m 1)+4 , ln(m 1)+8 ln(m 1)+7 , , ln(m(cid:12)1)(cid:0)+n+1 (cid:1) ln(m 1)+(cid:12)n(cid:9) − − − − − − ··· −(cid:12) − − (cid:12) = (cid:8)ln(cid:12)(m 1)+3,ln(m 1)+6, (cid:12),(cid:12)ln(m 1)+n 1 = ln(m (cid:12)1)+3,ln(cid:12)(m 1)+6, ,lnm 1 . (cid:12)(cid:9) (cid:12) − − ···(cid:12) (cid:12) − − −(cid:12) (cid:12) − ··· − (cid:12) (cid:8) (cid:9) (cid:8) (cid:9)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.