ebook img

Mathematical aspects of logic programming semantics PDF

282 Pages·2011·3.841 MB·xxx, 274 p. : ill. ; 25 cm\282
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical aspects of logic programming semantics

MATHEMATICAL ASPECTS OF LOGIC PROGRAMMING SEMANTICS Chapman & Hall/CRC Studies in Informatics Series SERIES EDITOR G. Q. Zhang Department of EECS Case Western Reserve University Cleveland, Ohio, U.S.A. PUBLISHED TITLES Stochastic Relations: Foundations for Markov Transition Systems Ernst-Erich Doberkat Conceptual Structures in Practice Pascal Hitzler and Henrik Schärfe Context-Aware Computing and Self-Managing Systems Waltenegus Dargie Introduction to Mathematics of Satisfiability Victor W. Marek Ubiquitous Multimedia Computing Qing Li and Timothy K. Shih Mathematical Aspects of Logic Programming Semantics Pascal Hitzler and Anthony Seda Chapman & Hall/CRC Studies in Informatics Series MATHEMATICAL ASPECTS OF LOGIC PROGRAMMING SEMANTICS P H ascal itzler Kno.e.sis Center at Wright State University Dayton, Ohio, USA a s ntHony eda University College Cork Ireland CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-2961-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedication To Anne, to Martine, and to the memory of Barbara and Ellen Lucille Contents List of Figures xi List of Tables xiii Preface xv Introduction xix About the Authors xxix 1 Order and Logic 1 1.1 Ordered Sets and Fixed-Point Theorems . . . . . . . . . . . 1 1.2 First-Order Predicate Logic . . . . . . . . . . . . . . . . . . . 7 1.3 Ordered Spaces of Valuations . . . . . . . . . . . . . . . . . . 12 2 The Semantics of Logic Programs 23 2.1 Logic Programs and Their Models . . . . . . . . . . . . . . . 23 2.2 Supported Models . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Stable Models . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 Fitting Models . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Perfect Models . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.6 Well-Founded Models . . . . . . . . . . . . . . . . . . . . . . 56 3 Topology and Logic Programming 65 3.1 Convergence Spaces and Convergence Classes . . . . . . . . . 66 3.2 The Scott Topology on Spaces of Valuations . . . . . . . . . 69 3.3 The Cantor Topology on Spaces of Valuations . . . . . . . . 76 3.4 Operators on Spaces of Valuations Revisited . . . . . . . . . 83 4 Fixed-Point Theory for Generalized Metric Spaces 87 4.1 Distance Functions in General . . . . . . . . . . . . . . . . . 88 4.2 Metrics and Their Generalizations . . . . . . . . . . . . . . . 91 4.3 Generalized Ultrametrics . . . . . . . . . . . . . . . . . . . . 97 vii viii Contents 4.4 Dislocated Metrics . . . . . . . . . . . . . . . . . . . . . . . . 102 4.5 Dislocated Generalized Ultrametrics . . . . . . . . . . . . . . 104 4.6 Quasimetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.7 A Hierarchy of Fixed-Point Theorems . . . . . . . . . . . . . 112 4.8 Relationships Between the Various Spaces . . . . . . . . . . . 114 4.9 Fixed-Point Theory for Multivalued Mappings . . . . . . . . 125 4.10 Partial Orders and Multivalued Mappings . . . . . . . . . . . 127 4.11 Metrics and Multivalued Mappings . . . . . . . . . . . . . . 129 4.12 Generalized Ultrametrics and Multivalued Mappings . . . . . 129 4.13 Quasimetrics and Multivalued Mappings . . . . . . . . . . . 132 4.14 An Alternative to Multivalued Mappings . . . . . . . . . . . 136 5 Supported Model Semantics 139 5.1 Two-Valued Supported Models . . . . . . . . . . . . . . . . . 140 5.2 Three-Valued Supported Models . . . . . . . . . . . . . . . . 151 5.3 A Hierarchy of Logic Programs . . . . . . . . . . . . . . . . . 159 5.4 Consequence Operators and Fitting-Style Operators . . . . . 161 5.5 Measurability Considerations . . . . . . . . . . . . . . . . . . 166 6 Stable and Perfect Model Semantics 169 6.1 The Fixpoint Completion . . . . . . . . . . . . . . . . . . . . 169 6.2 Stable Model Semantics . . . . . . . . . . . . . . . . . . . . . 171 6.3 Perfect Model Semantics . . . . . . . . . . . . . . . . . . . . 175 7 Logic Programming and Artificial Neural Networks 185 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.2 Basics of Artificial Neural Networks . . . . . . . . . . . . . . 188 7.3 The Core Method as a General Approach to Integration . . . 191 7.4 Propositional Programs . . . . . . . . . . . . . . . . . . . . . 192 7.5 First-Order Programs . . . . . . . . . . . . . . . . . . . . . . 196 7.6 Some Extensions – The Propositional Case . . . . . . . . . . 212 7.7 Some Extensions – The First-Order Case . . . . . . . . . . . 218 8 Final Thoughts 221 8.1 Foundations of Programming Semantics . . . . . . . . . . . . 221 8.2 Quantitative Domain Theory . . . . . . . . . . . . . . . . . . 222 8.3 Fixed-Point Theorems for Generalized Metric Spaces . . . . 223 8.4 The Foundations of Knowledge Representation and Reasoning 223 8.5 Clarifying Logic Programming Semantics . . . . . . . . . . . 224 8.6 Symbolic and Subsymbolic Representations . . . . . . . . . . 225 8.7 Neural-Symbolic Integration . . . . . . . . . . . . . . . . . . 225 8.8 Topology, Programming, and Artificial Intelligence . . . . . . 226 Contents ix Appendix: Transfinite Induction and General Topology 229 A.1 The Principle of Transfinite Induction . . . . . . . . . . . . . 229 A.2 Basic Concepts from General Topology . . . . . . . . . . . . 234 A.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 A.4 Separation Properties and Compactness . . . . . . . . . . . . 238 A.5 Subspaces and Products . . . . . . . . . . . . . . . . . . . . . 239 A.6 The Scott Topology . . . . . . . . . . . . . . . . . . . . . . . 240 Bibliography 243 Index 265 List of Figures 1.1 Hasse diagrams for THREE and FOUR. . . . . . . . . . . . 16 2.1 Dependency graph for P . . . . . . . . . . . . . . . . . . . . . 48 1 2.2 Dependency graph for P . . . . . . . . . . . . . . . . . . . . . 48 2 4.1 Dependencies between single-valued fixed-point theorems. . . 113 5.1 The main classes of programs discussed in this book. . . . . . 160 7.1 The neural-symbolic cycle. . . . . . . . . . . . . . . . . . . . . 187 7.2 Unit N in a connectionist network. . . . . . . . . . . . . . . 188 k 7.3 Sketch of a 3-layer recurrent network. . . . . . . . . . . . . . 191 7.4 Two 3-layer feedforward networks of binary threshold units. . 194 7.5 Transforming T into f . . . . . . . . . . . . . . . . . . . . . 198 P P 7.6 The embedding of the T -operator for Program 7.5.1. . . . . 199 P 7.7 The networks from Example 7.5.7. . . . . . . . . . . . . . . . 202 7.8 The embedding and approximation of a T -operator. . . . . . 202 P 7.9 An approximating sigmoidal network for Program 7.5.1. . . . 204 7.10 An approximation using the raised cosine function. . . . . . . 205 7.11 An RBF network approximating a T -operator. . . . . . . . . 206 P 7.12 A two-dimensional version of the Cantor set. . . . . . . . . . 207 7.13 A construction of the two-dimensional Cantor set. . . . . . . 207 7.14 A vector-based approximating network. . . . . . . . . . . . . 208 7.15 A conjunction unit for FOUR. . . . . . . . . . . . . . . . . . 216 xi List of Tables 1.1 Belnap’s four-valued logic. . . . . . . . . . . . . . . . . . . . . 11 4.1 Generalized metrics: Definition 4.2.1. . . . . . . . . . . . . . . 92 4.2 (Dislocated) generalized ultrametrics: Definition 4.3.1. . . . . 98 4.3 Summary of single-valued fixed-point theorems. . . . . . . . . 113 5.1 Several truth tables for three-valued logics. . . . . . . . . . . 153 xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.