ebook img

Mathematical Analysis: An Introduction to Functions of Several Variables PDF

361 Pages·2009·3.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Analysis: An Introduction to Functions of Several Variables

Mariano Giaquinta Giuseppe Modica Mathematical Analysis An Introduction to Functions of Several Variables Birkha¨user Boston • Basel • Berlin MarianoGiaquinta GiuseppeModica ScuolaNormaleSuperiore DipartimentodiMatematicaApplicata Piazza dei Cavalieri, 7 Universita`diFirenze I-56100 Pisa, Italy Via S. Marta, 3 [email protected] I-50139 Firenze, Italy [email protected] LibraryofCongressControlNumber:2009922164 ISBN 978-0-8176-4509-0 (hardcover) e-ISBN 978-0-8176-4612-7 ISBN 978-0-8176-4507-6 (softcover) DOI 10.1007/978-0-8176-4612-7 MathematicsSubjectClassification(2000):00A35,32A10, 42B05, 49J40, 34D99 © BirkhäuserBoston,apartofSpringerScience+BusinessMedia,LLC 2009 Allrightsreserved. Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit- ten permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media, LLC, 233SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviews orscholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde- velopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. CoverdesignbyAlexGerasev. Printedonacid-freepaper. www.birkhauser.com Preface This book1 introduces the main ideas and fundamental methods of differ- ential and integral calculus for functions of several variables. In Chapter 1 we discuss differential calculus for functions of several variableswithashortexcursionintodifferentialcalculusinBanachspaces. In Chapter 2 we present some of the most relevant results of the Lebesgue integration theory, including the limit and approximation theo- rems, Fubini’s theorem, the area and coarea theorems, and Gauss–Green formulas. The aim is to provide the reader with all that is needed to use the power of Lebesgue integration. For this reason some details as well as some proofs concerning the formulation of the theory are skipped, as we think they are more appropriatein the generalcontext of measuretheory. In Chapter 3 we deal with potentials and integration of differential 1-forms, focusing on solenoidal and irrotational fields. Chapter 4 provides a sufficiently wide introduction to the theory of holomorphicfunctions ofonecomplexvariable.Wepresentthefundamen- tal theorems and discuss singularities and residues as well as Riemann’s theoremonconformalrepresentationandtherelatedSchwarzandPoisson formulas and Hilbert’s transform. In Chapter 5, we discuss the notions of immersed and embedded sur- face in Rn, and we present the implicit function theorem and some of its applications to vector fields, constrained minimization, and functional de- pendence. The chapter ends with the study of some notions of the local theory of curves and surfaces, such as of curvature, first variation of area, the Laplace–Beltrami operator, and distance function. In Chapter 6, after a few preliminaries about systems of linear ordi- nary differential equations, we discuss a few results concerning the sta- bility of nonlinear systems and the Poincar´e–Bendixson theorem in or- der to show that dynamical systems with one degree of freedom do not present chaos, in contrast with the one-dimensional discrete dynamics or the higher-dimensional continuous dynamics. 1 This book is a translated and revised edition of M. Giaquinta, G. Modica, Analisi Matematica, IV. Funzioni di piu` variabili,PitagoraEd.,Bologna,2005. vi Preface Thestudyofthisvolumerequiresastrongereffortcomparedtothatof [GM1],[GM2],and [GM3]2 both because of intrinsic difficulties and broad scope of the themes we present. We think, in fact, that it is useful for the readertohaveawidespectrumofcontextsinwhichtheseideasplayanim- portantroleandwhereineventhetechnicalandformalaspectsplayarole. However, we have tried to keep the same spirit, always providing exam- ples, illustrations, andexercises to clarify the main presentation,omitting severaltechnicalitiesordevelopmentsthatwethoughttobetooadvanced. We are greatly indebted to Cecilia Conti for her help in polishing our first draft and we warmly thank her. We would like to thank also Paolo Acquistapace, Timoteo Carletti, Giulio Ciraolo, Roberto Conti, Giovanni Cupini, Matteo Focardi, Pietro Majer, and Stefano Marmi for their com- ments and their invaluable help in catching errors and misprints and Ste- fan Hildebrandt for his comments and suggestions concerning especially the choice of illustrations. Our special thanks also go to all members of the editorial and technical staff of Birkha¨user for the excellent quality of their work and especially to Rebecca Biega and the executive editor Ann Kostant. Note: We have tried to avoidmisprints and errors.But, as most authors, weareimperfect.Wewillbeverygratefultoanybodywhowantstoinform us about errors or just misprints, or wants to express criticism or other comments. Our e-mail addresses are [email protected] [email protected] We shall try to maintain any errata and corrigenda at the following web pages: http://www.sns.it/~giaquinta http://www.dma.unifi.it/~modica Mariano Giaquinta Giuseppe Modica Pisa and Firenze July 2007 2 We shall refer to the following sources as [GM1], [GM2], and [GM3], respectively: [GM1]:M.Giaquinta,G.Modica,MathematicalAnalysis,FunctionsofOneVariable, Birkh¨auser,Boston,2003;[GM2]:M.Giaquinta,G.Modica,Mathematical Analysis, Approximation and Discrete Processes, Birkh¨auser, Boston, 2004; [GM3]: M. Gia- quinta, G. Modica,Mathematical Analysis, Linear and Metric Structures and Con- tinuity,Birkh¨auser,Boston,2007. Contents Preface ..................................................... v 1. Differential Calculus .................................... 1 1.1 Differential Calculus of Scalar Functions................. 1 1.1.1 Directionalandpartialderivatives,andthedifferential 1 a. Directional derivatives ........................ 1 b. The differential............................... 2 c. The gradient vector........................... 5 d. Direction of steepest ascent .................... 6 1.1.2 Directional derivatives and differential in coordinates 7 a. Partial derivatives ............................ 7 b. Jacobian matrix.............................. 8 c. The differential in the dual basis ............... 8 d. The gradient vector in coordinates.............. 9 e. The tangent plane ............................ 9 f. The orthogonalto the tangent space ............ 10 g. The tangent map............................. 11 h. Differentiability and blow-up................... 12 1.2 Differential Calculus for Vector-valued Functions ......... 12 1.2.1 Differentiability................................. 14 a. Jacobian matrix.............................. 14 b. The tangent space ............................ 16 1.2.2 The calculus ................................... 20 1.2.3 Differentiation of compositions.................... 21 1.2.4 Calculus for matrix-valued maps .................. 22 1.3 Theorems of Differential Calculus....................... 24 1.3.1 Maps with continuous derivatives ................. 24 a. Functions of class C1(A) ...................... 24 b. Functions of class C1(A) ...................... 25 c. Functions of class C2(A) ...................... 26 d. Functions of classes Ck(A) and C∞(A).......... 28 1.3.2 Mean value theorem............................. 29 a. Scalar functions .............................. 29 b. Vector-valued functions ....................... 31 1.3.3 Taylor’s formula ................................ 32 a. Taylor’s formula of second order................ 33 viii Contents b. Taylor formulas of higher order................. 34 c. Real analytic functions........................ 36 d. A converse of Taylor’s theorem................. 37 1.3.4 Critical points .................................. 38 1.3.5 Some classical partial differential equations......... 42 1.4 Invertibility of Maps Rn →Rn ......................... 46 1.4.1 Banach’s fixed point theorem..................... 47 1.4.2 Local invertibility ............................... 48 1.4.3 A few examples................................. 51 1.4.4 A variational proof of the inverse function theorem.. 55 1.4.5 Global invertibility.............................. 56 1.5 Differential Calculus in Banach Spaces .................. 57 1.5.1 Gaˆteaux and Fr´echet differentials ................. 57 a. Gradient .................................... 59 b. Mean value theorem .......................... 60 c. Higher order derivatives and Taylor’s formula .... 61 1.5.2 Local invertibility in Banach spaces ............... 62 1.6 Exercises ............................................ 62 2. Integral Calculus ....................................... 67 2.1 Lebesgue’s Integral ................................... 67 2.1.1 Definitions and properties: a short summary........ 67 a. Lebesgue’s measure........................... 68 b. Measurable functions ......................... 70 c. Lebesgue’s integral ........................... 71 d. Basic properties of Lebesgue’s integral .......... 72 e. The integral as area of the subgraph ............ 74 f. Chebyshev’s inequality ........................ 74 g. Negligible sets and the integral................. 74 h. Riemann integrable functions .................. 75 2.1.2 Fubini’s theorem and reduction to iterated integrals . 76 2.1.3 Change of variables ............................. 78 2.1.4 Differentiation and primitives..................... 78 2.2 Convergence Theorems................................ 81 a. Monotone convergence ........................ 81 b. Dominated convergence ....................... 83 c. Absolute continuity of the integral.............. 86 d. Differentiation under the integral sign........... 86 2.3 Mollifiers and Approximations ......................... 89 a. C0-approximations and Lusin’s theorem......... 89 b. Mollifying in Rn.............................. 91 c. Mollifying in Ω............................... 94 2.4 Calculus of Integrals .................................. 96 2.4.1 Calculus of multiple integrals..................... 96 a. Normal sets.................................. 97 b. Rotational figures ............................ 99 c. Changes of coordinates........................100 Contents ix d. Measure of the n-dimensional ball ..............104 e. Isodiametric inequality ........................105 f. Euler’s Γ function ............................106 g. Tetrahedrons ................................108 2.4.2 Monte Carlo method ............................110 2.4.3 Differentiation under the integral sign .............111 2.5 Measure and Area ....................................114 2.5.1 Hausdorff’s measures ............................114 2.5.2 Area formula ...................................116 a. Calculus of the area of a surface................119 2.5.3 The coarea formula .............................121 2.6 Gauss–Green Formulas................................123 a. Two simple situations.........................124 b. Admissible sets...............................126 c. Decomposition of unity........................127 d. Gauss–Green formulas ........................128 e. Integration by parts ..........................130 f. The divergence theorem .......................130 g. Geometrical meaning of the divergence..........130 h. Divergence and transport of volume.............131 2.7 Exercises ............................................132 3. Curves and Differential Forms ..........................137 3.1 Differential Forms, Vector Fields, and Work..............137 a. Vector fields and differential forms..............137 b. Curves ......................................138 c. Integration along a curve and work .............140 3.2 Conservative Fields and Potentials......................142 a. Exact differential forms .......................142 3.3 Closed Forms and Irrotational Fields....................145 a. Closed forms.................................145 b. Poincar´e lemma ..............................147 c. Homotopic curves and work....................148 d. Simply connected subsets and closed forms ......150 3.3.1 Pull back of a differential form....................151 3.3.2 Homotopy formula ..............................153 a. Stokes’s theorem in a square ...................153 b. Homotopy formula............................155 3.4 Stokes’s Formula in the Plane..........................156 3.5 Exercises ............................................158 4. Holomorphic Functions .................................159 4.1 Functions from C to C ................................159 a. Complex numbers ............................159 b. Complex derivative ...........................159 c. Cauchy–Riemann equations....................160 4.2 The Fundamental Theorem of Calculus on C.............163

Description:
This text introduces basic ideas, structures, and results of differential and integral calculus for functions of several variables. The presentation is engaging and motivates the reader with numerous examples, remarks, illustrations, and exercises.Mathematical Analysis: An Introduction to Functions
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.