MathemLaatbiocraa tories foMra themaSttiactails tics ASA-SIASMe rioens StatisatnidAc psp liPerdo bability TheA SA-SIASMe rioensS tatisatnidAc psp liPerdo babiilspi utbyl ished joinbtylt yh eA mericSatna tisAtsiscoacli aatnidot nh eS ocieftoyIr n dustarnidAa plp lied MathematTihcess .e riceosn siosfta s b roasdp ectroufmb ookosn t opiicnss tatiasntdi cs appliperdo babiTlhietp yu.r poosfet hes eriiests o p roviidnee xpensqiuvael,ip tuyb lications ofi nterteots hte i ntersemcetmibnergs hiopft het wos ocieties. EditorBioaalr d RoberNt.R odriguez DouglaMs. Hawkins SASI nstiItnuctE.ed, i tor-in-Chief UniverosfiM tiyn nesota DaviBda nks SusaHno lmes DukeU niversity StanfoUrndi versity H.T .B anks LisLaa Vange NortCha rolSitnaat Uen iversity InspiPrhea rmaceutIincca.l s, RichaKr.dB urdick GaryC .M cDonald ArizoSntaa tUen iversity OaklanUdn iverasnidt y NationIanls tiotfuS ttea tisStciiceanlc es JosepGha rdiner MichigSatna tUen iversity FrancoSiesiel lier-Moiseiwitsch UniverosfiM tayr yland-BalCtoiumnotrye Baglijv.Ao .,M, a thematLiacbao ratofroiMrea st hematiSctaalt isEtmipchsa:s izSiinmgu lation andC omputeIrn tensMievteh ods LeeH,. K .H .B,a yesiNaonn parametvriiNace su raNle tworks O'GormaTn.,W . ,A ppliAedda ptiSvtea tisMteitchaold Tse:s tosfS ignificaanndc e ConfideInnctee rvals RossT,.j .B,o okejr.M, . ,a ndP arkinWs.o jn.,e, d sF.u,z zLyo giacn dP robabiAlpiptlyi cations: BridgitnhgeC ap NelsoWn., B .R,e currEevnetn Dtast Aan alyfsoiPrsr oduRcetp aiDriss,e aRseec urrenacneds , OtheArp plications MasonR,. L .a ndY oungj,.C .M,u ltivaSrtiaatties PtrioccaelCs osn trowli tIhn dustrial Applications SmitPh.,L .A, P rimefroS ra mpliSnogl idLsi,q uiadnsd,C asesB:a seodn t heS eveSna mpling ErroorfsP ierCrye MeyerM,. A .a ndB ookejr.M, . ,E liciatnidnA gn alyziEnxgp ejrutd gmenAt P:r actiGcuaild e LatoucGh.ea ,n dR amaswamVi.,,I ntroducttoMi aotnr Ainxa lytMiecth odisnS tochastic Modeling PeckR,. H,a ughL,.a ,n dG oodmanA,. S,t atisCtaiscSeat lu diAe sC:o llaboraBteitowne en Academaen dI ndustSrtyu,d eEndti tion PeckR,. H,a ughL,.a ,n dG oodmanA,. S,t atisCtaiscSeat lu diAe sC:o llaboratBieotnw een Academaen dI ndustry BarloRw.,E, n gineeRreilniga bility CzitroVm.a ,n dS pagoPn.,D .,S tatisCtaisceSa tlu difeosIr n dustPrrioacle Ismsp rovement MathemLaatbiocraa tories foMra themaSttiactails tics EmphasiSziimnugl ation andC ompuItnetre nMseitvheo ds JennAy. B aglivo BostCoonl lege ChestHniulMtla ,s sachusetts • SJ.aJTl.. ASA SocieftoyIr n dustarnidAa plp liMeadt hematics AmericSatna tisAtsiscoacli ation PhiladelPpehninas,y lvania AlexandVriirag,i nia The correct bibliographic citation for this book is as follows: Baglivo, Jenny A., Mathematica Laboratories for Mathematical Statistics: Emphasizing Simulation and Computer Intensive Methods, ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, ASA, Alexandria, VA, 2005. Copyright © 2005 by the American Statistical Association and the Society for Industrial and Applied Mathematics. 10987654321 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688. No warranties, express or implied, are made by the publisher, authors, and their employers that the programs contained in this volume are free of error. They should not be relied on as the sole basis to solve a problem whose incorrect solution could result in injury to person or property. If the programs are employed in such a manner, it is at the user's own risk and the publisher, authors and their employers disclaim all liability for such misuse. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. Mathematica is a registered trademark of Wolfram Research, Inc. Adobe, Acrobat, and Reader are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. This work was supported by Boston College through its faculty research programs and by the National Science Foundation through its Division of Undergraduate Education (NSFa DUE 9555178). Library of Congress Cataloging-in-Publication Data Baglivo, Jenny A. (Jenny Antoinette) Mathematica laboratories for mathematical statistics : emphasizing simulation and computer intensive methods / Jenny A. Baglivo. p. cm. — (ASA-SIAM series on statistics and applied probability) Includes bibliographical references and index. ISBN 0-89871-566-0 (pbk.) 1. Mathematical statistics—Computer simulation. 2. Mathematica (Computer file) I. Title. II. Series. QA276.4.B34 2005 519.5'01'13-dc22 2004056579 slam. is a registered trademark. Disclaimer: This eBook does not include ancillary media that was packaged with the printed version of the book. Dedicatteotd h em emoryo f Anthonayn dP hilomeBnaag livo MarioFne rri This page intentionally left blank Contents Preface XV 1 IntroductProobrya biliCtoyn cepts 1 1.1 Definiti.o .n .s . . . 1 1.2 Kolmogoraoxvi om.s . . . . . 2 1.3 Countimnegt ho.d s. . .. .. 5 1.3.1 Permutatainodnc so mbinations 6 1.3.2 Partitisoentis.n .g 7 1.3.3 Generatfuinncgt io.n.s 9 1.4 Conditipornoabla bi.l i.t ..y . . 9 1.4.1 Lawo ftotpalr obability 11 1.4.2 Bayersu le. .. . . . . 11 1.5 Independeevnetn t.s . . .. . . . 12 1.5.1 Repeattreida lasn dm utuailn dependence 13 1.6 Laboratporroyb lem.s . . . .. .. . . . .. 13 1.6.1 LaboratoIrnytr:o ductcoornyc e.p ts 13 1.6.2 Additionparlo blneomt ebooks 13 2 DiscrePrtoeb abilDiitys tributions 15 2.1 Definiti.o .n .s . .. . .. . . . .. . .. . . . . 15 2.1.1 PDFa ndC DF fodri scrdeitset ributions 16 2.2 Univaridaitsetr ibut.i .o .n .s . . . .. . . . .. 17 2.2.1 ExamplDei:s cruentief odrims tribution 17 2.2.2 ExamplHey:p ergeomedtriisctr ibution 17 2.2.3 Distributrieolnastt eoBd e rnoulelxip erimen.t s 18 2.2.4 Simplrea ndosma mple.s . . 20 2.2.5 ExamplPeo:i ssdoins tribu.t .i .o .n . . . . 21 2.3 Joindti stributi.o .n .s . .. . . . . .. . .. . . . . . 22 2.3.1 Bivariadties tribumtiaorngsi;nd ails tributions 22 2.3.2 Conditidoinsatrli butiinodnesp;e nde.n .c. e 23 2.3.3 ExamplBei:v ariahtyep ergeomedtriisctr ibu.ti on 24 2.3.4 ExamplTer:i nomdiiasltr ibuti.o n 25 2.3.5 Surveayn alys.i .s . . . .. .. . 25 2.3.6 Discrmeutlet ivadriisatritbeu tions 26 2.3.7 Probabigleinteyr atfiunngc tions 26 vii viii Contents 2.4 Laboratporroyb le.m s. . . . .. . . . 27 2.4.1 LaboratoDriys:c rmeotdee l.s 27 2.4.2 Additionparlo blneomt ebooks 27 3 ContinuoPruosb abilDiitsyt ributions 29 3.1 Definiti.o .n .s . .. . . . .. . . . . . .. . . . . . . . 29 3.1.1 PDFa ndC DF forc ontinuroaunsd ovma riables 29 3.1.2 Quantilpeesr;c enti.l.e.s. . 31 3.2 Univaridaitsetri buti.o.n.s. ....... . 31 3.2.1 ExamplUen:i fordmi stributio.n. 31 3.2.2 ExamplEex:p onentidails trib.u tion 32 3.2.3 Eulegra mmafu nctio.n . . . . . . 33 3.2.4 ExamplGeam:m ad istribu.ti o.n . 33 3.2.5 Distributrieolnastt eoPd o issporonc esses 34 3.2.6 ExamplCea:u chdyi stribu.t i.o .n . . . 35 3.2.7 ExamplNeo:rm alo rG aussidains tribution 35 3.2.8 ExamplLea:p ladcies tribut.i o.n . . .. . 36 3.2.9 Transforcmoinntg inuroaunsd ovmari ables 36 3.3 Joindti stribu.t .i .o. n .s . .. .. . . . . .. . .. 38 3.3.1 Bivaridaitset ribumtairognisnd;ai ls tributions 38 3.3.2 Conditidoinsatlr ibuitnidoenpse;n d.e nce 40 3.3.3 ExamplBei:v ariuantief odrims trib.u .t ion 41 3.3.4 ExamplBei:v arinaotrem adli stribu.t i.o n 41 3.3.5 Transformcionngt inuroaunsd ovmari ables 42 3.3.6 Continumouulst ivadriisatrtieb utions 43 3.4 Laboratporroyb lem.s. ........ . 44 3.4.1 LaboratoCroyn:t inumooudse ls 44 3.4.2 Additiopnraolb lneomt ebooks 44 4 MathematiEcxaple ctation 45 4.1 Definitiaonndps r oper.t ies 45 4.1.1 Discrdeitsetr ibut.i .o ns 45 4.1.2 Continudoiusst ributions 46 4.1.3 Proper.t i.e .s. . . . . 47 4.2 Meanv,a riansctea,n dadredv iation 48 4.2.1 Propert.i e.s . . . .. 48 4.2.2 Chebyshienve qual.i t.y 49 4.2.3 Markoivn equal.i .t .y 50 4.3 Functioonfst woo rm orer andovma riables 50 4.3.1 Propert.i.e.s. ... . 51 4.3.2 Covariacnocrer,e la.t.i.o.n. 51 . 4.3.3 Samplseu mmarie.s . . .. . .. 54 4.3.4 Conditieoxnpaelc tatrieognr;e ssion 55 4.4 Linefuanr ctioonfsr andovma riab.l .e. s . . 56 4.4.1 Independneonrtm arla ndovma riables 57 Contents ix 4.5 Laboratporroyb le.m s. . . . . .. . . . . . .. 58 4.5.1 LaboratoMrayt:h ematiecxapelc tation. 58 4.5.2 Additiopnraolb lneomt eboo.k.s. .. 58 5 LimiThteo rems 59 5.1 Definitio.n. s . . . .. . . . . . . .. . . . .. . . . . . 59 5.2 Lawo flargneu mber.s. . . . . . . . . . . . . . . . . . 60 5.2.1 ExamplMeo:n teC arleov aluatoifio nnt eg.r als 60 5.3 Centralli mtiht eore.m. . . . . 61 5.3.1 Continuciotryr ect.i on 62 5.3.2 Specicaals e.s . . . . 62 5.4 Momentg eneratifunngc tio.n. s 63 5.4.1 Methoodf m omengte neratifnugn cti.o ns 65 5.4.2 Relationtsoth hiecp e ntralli mtiht eorem 65 5.5 Laboratporroyb lem.s. . . . . .. . . . 66 5.5.1 LaboratoSruym:sa nda verages 66 5.5.2 Additiopnraolb lneomt eboo.k s 66 6 TransitiotnoS tatistics 69 6.1 Distributiroenlsa tteotd h en ormadli stribu.t ion 69 6.1.1 Chi-squdairsetr ibution 69 . 6.1.2 Studenttd istribut.i .o. n. . . . 70 6.1.3 F ratdiios tribut.i. o. n. . . . . 71 6.2 Randoms amplfreosm normald istributions 71 6.2.1 Samplmee ans,a mplvea ria.n c.e 72 6.2.2 Approximsattaen dardiozfat tihoesn am plem ean 73 6.2.3 Ratioo fs amplvea riances 74 6.3 Multinomeixaple rime.n .t. s. . . . . . 75 6.3.1 Multinomdiiasltr ibut.i. o. n. 75 6.3.2 Goodness-oKfn-ofiwtnm: o del 75 6.3.3 Goodness-oEfs-tfiimta:tm oedde l 77 6.4 Laboratporroyb lem.s . . . . . . . . . . . 79 6.4.1 LaboratoTrrya:n sittioso tna tis.t ics 79 6.4.2 Additionparolb lenmo tebooks 79 7 EstimatioThne ory 81 7.1 Definitio.n. s. . . . . .. . . . 81 . 7.2 Propertiesof p oinets timat.o. r. s 82 7.2.1 Biasu;n biaseesdti mator 82 7. 2.2 Efficiencfyo urn biaseesdt imators 82 7. 2.3 Means quareerrdo r. 83 7. .24 Consiste.n. c. y. . . . . . . 83 7.3 Interevsatli matio.n. . . . . .. . . . 84 7. 3.1 ExamplNeo:r madli stribution 84 7. 3.2 Approximianttee rvfaolmrse ans . 86 7.4 Methoodf m omentess timati.o. n . . 86 7.4.1 Singplaer ameetsetri mat.i. o. n 86
Description: