ebook img

Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental PDF

20 Pages·2015·0.56 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental

RESEARCHARTICLE Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental Offspring Longissimus Muscle Transcriptome and Intramuscular Fat SoniaJ.Moisá1,DanielW.Shike2,LindsayShoup2,SandraL.Rodriguez-Zas2,3,Juan J.Loor1,2,4* 1 MammalianNutriPhysioGenomics,DepartmentofAnimalSciences,UniversityofIllinois,Urbana,Illinois, UnitedStatesofAmerica,2 DepartmentofAnimalSciences,UniversityofIllinois,Urbana,Illinois,United StatesofAmerica,3 TheInstituteforGenomicBiology,UniversityofIllinois,Urbana,Illinois,UnitedStatesof America,4 DivisionofNutritionalSciences,IllinoisInformaticsInstitute,UniversityofIllinois,Urbana,Illinois, UnitedStatesofAmerica * [email protected] Abstract OPENACCESS Citation:MoisáSJ,ShikeDW,ShoupL,Rodriguez- Inmodelorganismsboththenutritionofthemotherandtheyoungoffspringcouldinduce ZasSL,LoorJJ(2015)MaternalPlaneofNutrition long-lastingtranscriptionalchangesintissues.Inlivestock,suchchangescouldhaveimpor- duringLateGestationandWeaningAgeAlterAngus tantrolesindeterminingnutrientuseandmeatquality.Themainobjectivewastoevaluateif ×SimmentalOffspringLongissimusMuscle planeofmaternalnutritionduringlate-gestationandweaningagealtertheoffspring’sLong- TranscriptomeandIntramuscularFat.PLoSONE 10(7):e0131478.doi:10.1371/journal.pone.0131478 issimusmuscle(LM)transcriptome,animalperformance,andmetabolichormones.Whole- transcriptomemicroarrayanalysiswasperformedonLMsamplesofearly(EW)andnormal Editor:PascaleChavatte-Palmer,INRA,FRANCE weaned(NW)Angus×Simmentalcalvesborntograzingcowsreceivingnosupplement Received:March26,2015 [lowplaneofnutrition(LPN)]or2.3kghigh-grainmix/day[mediumplaneofnutrition(MPN)] Accepted:June1,2015 duringthelast105daysofgestation.BiopsiesofLMwereharvestedat78(EW),187(NW) Published:July8,2015 and354(beforeslaughter)daysofage.DespitegreaterfeedintakeinMPNoffspring,blood Copyright:©2015Moisáetal.Thisisanopen insulinwasgreaterinLPNoffspring.CarcassintramuscularfatcontentwasgreaterinEW accessarticledistributedunderthetermsofthe offspring.Bioinformaticsanalysisofthetranscriptomehighlightedamodestoverall CreativeCommonsAttributionLicense,whichpermits responsetomaternalplaneofnutrition,resultinginonly35differentiallyexpressedgenes unrestricteduse,distribution,andreproductioninany (DEG).However,weaningageandahigh-graindiet(EW)stronglyimpactedthetranscrip- medium,providedtheoriginalauthorandsourceare credited. tome(DEG=167),especiallycausingalipogenicprogramactivation.Inaddition,between 78and187daysofage,EWsteershadanactivationoftheinnateimmunesystemduepre- DataAvailabilityStatement:Allmicroarraydata filesareavailablefromtheNCBIGEOdatabase sumablytomacrophageinfiltrationofintramuscularfat.Between187and354daysofage (accessionnumberGSE65560). (the“finishing”phase),NWsteershadanactivationofthelipogenictranscriptomemachin- Funding:ThisstudywasfundedbytheDivisionof ery,whileEWsteershadaclearinhibitionthroughtheepigeneticcontrolofhistoneacety- NutritionalSciencesVision20/20”(Universityof lases.Resultsunderscoredtheneedtoconductfurtherstudiestounderstandbetterthe Illinois,Urbana-Champaign)interdisciplinarynutrition- functionaloutcomeoftranscriptomechangesinducedintheoffspringbypre-andpost-natal relatedresearchprogram,andproject#ILLU-971– nutrition.Additionalknowledgeonmolecularandfunctionaloutcomeswouldhelpproduce 352(NationalInstituteofFoodandAgriculture,USA). Thefundershadnoroleinstudydesign,data moreefficientbeefcattle. collectionandanalysis,decisiontopublish,or preparationofthemanuscript. PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 1/20 NeonatalNutritionAltersOffspringMuscleTranscriptome CompetingInterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Theprenatalperiodsduringwhichtheorganismissusceptibletoenvironmentalstimulilead- ingtofetalprogrammingaretheembryonicphase,themid-gestationperiod(organogenesis), andlategestation(rapidgrowth).Theeffectsofmaternalnutritiononfetalgrowthandits carry-overeffectsonoffspringgrowthanddevelopmentwerereviewedrecently.Asanexam- ple,extremeintrauterinegrowthretardationcanresultinslowergrowththroughoutpostnatal life[1].Maternalnutritionseemstoelicitdifferentoutcomesintheoffspringdependingonthe gestationalstageduringwhichtreatmentsbegin.Forexample,proteinsupplementationof grazingcowsduringlategestationinthewinterenhancedfeedlotperformanceandcarcass qualityoftheoffspring. Inareviewonfetalprogrammingandskeletalmuscledevelopmentintheruminant[2],it wasconcludedthatadipogenesisisinitiatedduringmid-gestation.Atthistime,apoolofundif- ferentiatedmesenchymalstemcellsispresent.Fromthispool,eithermyocytesoradipocytes areabletodifferentiatefromcommittedmesenchymalcellstobecomeskeletalmuscleoradi- posetissue[3].Theincreaseinnumberofstemcellsthroughoutmiddle-to-lategestationledto thehypothesisthatnutritionalmanagementhasthepotentialtobemoreeffectiveduringthe prenatalperiodratherthanthepostnatalportionofananimal’slife[2].Insheep,astudy revealedthatdifferencesinmaternalnutritionduringmid-to-lategestationcanimpactthepro- gramingoffetalmuscleandfattissues[4].However,itremainstobedeterminedifplaneof nutritionduringlate-pregnancy(last90days)canelicitcarryovereffectsacquiredthroughpro- gramminginbeefcattle. Thereareseveralmaternal-nutritionstudiesutilizingreal-timeRT-PCRtoevaluatespecific targetgenesinadiposetissueorlongissimusmuscle(LM)ofbeef[5],lamb[6]andsheep[7] offspring.Despitetheseefforts,tothebestofourknowledge,therearenopublishedstudiesof whole-transcriptomeprofilesinLMofoffspringfrommothersfedhighorlowplanesofnutri- tionduringlate-pregnancyinbeefcattle. Ourhypothesiswasthatahigh-planeofnutritionofthecowduringlategestationwould resultinearlyactivationofgenesassociatedwithmyogenesis,adipogenesis,lipogenesisandthe synthesisofadipokinesintheoffspring’sskeletalmuscle.Furthermore,changesinnutritionof thepregnantmotheralsowouldelicitalterationsassociatedwithepigeneticregulationofgene expression.Theobjectivesofthisstudyweretoassesstheeffectofmaternalplaneofnutrition andearlyweaningtoahigh-graindietontheskeletalmuscletranscriptomeoftheoffspring. MaterialsandMethods AnimaluseinthisstudywasapprovedbytheInstitutionalAnimalCareandUseCommittee (IACUC)oftheUniversityofIllinois.Asubsetof20Angus×Simmentalbeefcowsfromthe UniversityofIllinoisDixonSpringsAgricultureCenterinSimpson,IL(USA),wereselected fromagroupofanimalsutilizedinaparallelstudy[8].Maineffectsevaluatedwerematernal planeofnutritionduringlategestationandpostnatalmanagementoftheoffspring.Three monthspriortotheprojectedparturitiondatecowswereassignedtotreatments(lowor mediumplaneofnutrition)inasplit-plotdesign.Lowplaneofnutrition(LPN)wasachieved bygrazingendophyte-infectedtallfescue/redcloverpasturesduringJuly,August,andSeptem- berwithnosupplement.Mediumplaneofnutritioncowdiet(MPN)wasachievedbygrazing endophyte-infectedtallfescue/redcloverpasturessupplementeddailywith2.3kgofdrieddis- tiller’sgrainswithsolublesandsoyhulls(70%DDGS/30%soyhulls).Cowsupplementationwas initiatedat103±11daysprepartumwhileonpastureanditwashaltedatthemidpointofpar- turition(2±11dayspostpartum).Moreinformationaboutcowsupplementationisreported elsewhere[8]. PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 2/20 NeonatalNutritionAltersOffspringMuscleTranscriptome Compositionofthediet[drymatter(DM)basis]fedtoearlyweaned(EW)steersupon arrivaltothefeedlotandpriortonormalweaning(NW),andthefeedlotdietfedtoEWand NWsteersafternormalweaningarereportedinTable1.Angus×Simmentalsteercalveswere randomlyassignedtoearlyornormalweaning(EWorNW)treatmentswithineachgestational treatment.At78±2dayspostpartum,EWoffspringwereweaned,transportedtoUniversityof IllinoisBeefandSheepFieldLaboratory(Urbana,IL,USA),andadaptedtoahigh-graindiet untiltheyhadadlibitumconsumption.At187±2dayspostpartum,NWoffspringwere weanedandtransportedtoUniversityofIllinoisBeefandSheepFieldLaboratory.Alloffspring wereco-mingledamongtreatments. Bloodwascollectedfromthejugularveinat78,187and296daysofagetoisolateserumfor insulin(BovineInsulinELISAkit,CatNo.10–1201–01,MercodiaAB,Uppsala,Sweden),glu- cose(HexokinaseG-6-PDHmethodusingaBeckmanCoulter,Fullerton,CA,USA;Diagnos- ticsLaboratory,CollegeofVeterinaryMedicine,UniversityofIllinois,Urbana,USA)and adiponectin(Millipore,LA,USA).ThelatterwasdeterminedusingaliquidRIA(Millipore, LA,USA)followingaprotocolpreviouslydescribed[9].Afternormalweaning,alloffspring wereplacedonacommon,grain-basedfinishingdietthatistypicalofindustrymanagement [crudeprotein(CP)%,18.1,neutraldetergentfiber(NDF)%,25.3,aciddetergentfiber(ADF) Table1. Compositionofdiet(DMbasis)fedtoearlywean(EW)steersuponarrivaltofeedlotandprior tonormalweaning1andfeedlotdietfedtoEWandnormalwean(NW)steersafternormalweaning. Inclusion,%DM Item EWdiet Feedlotdiet Ingredient,% MWDGS2 45 45 DryWholeCorn 25 25 HighMoistureCorn — — CornHusklage 20 20 Groundcorn 7.3 7.3 Limestone 2.5 2.5 Tracemineralsalt3 0.1 0.1 Rumensin904 0.018 0.018 Tylosin405 0.012 0.012 Soybeanoil 0.076 0.076 Analyzednutrientcontent,% Crudeprotein 17.3 18.1 Neutraldetergentfiber 23.9 25.3 Aciddetergentfiber 14.1 14.3 Crudefat 5.3 5.1 1Ageatweaning:EW=78±11daysofage;NW=186±11daysofage. 2MWDGS=ModifiedWetDistillersGrainswithSolubles. 3TraceMineralSalt=8.5%Ca(asCaCO3),5%Mg(asMgOandMgSO4),7.6%K(asKCl2),6.7%Cl(as KCl2)10%S(asS8,prilled),0.5%Cu(asCuSO4andAvaila-4(ZinproPerformanceMinerals;Zinpro Corp,EdenPrairie,MN)),2%Fe(asFeSO4),3%Mn(asMnSO4andAvaila-4),3%Zn(asZnSO4and Availa-4),278ppmCo(asAvaila-4),250ppmI(asCa(IO3)2),150Se(Na2SeO3),2,205KIU/kgVitA(as retinylacetate),662.5KIU/kgVitD(ascholecalciferol),22,047.5IU/kgVitE(asDL-α-tocopherylacetate), andlessthan1%CP,fat,crudefiber,salt. 4Rumensin90(198gmonensin/kgRumensin90;ElancoAnimalHealth,Greenfield,IN,USA). 5Tylosin40(88gtylan/kgTylosin40;ElancoAnimalHealth,Greenfield,IN,USA). doi:10.1371/journal.pone.0131478.t001 PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 3/20 NeonatalNutritionAltersOffspringMuscleTranscriptome %,14.3,crudefat%,5.1](Table1).Alltheoffspringinthestudywereharvestedatacommer- cialpackingplantwhentheyreachedtheselectedendpointtargetbackfatthicknessof1.1cm. Reportedfinalbodyweight(BW)wascalculatedfromhotcarcassweightusinga62%dressing percentage. LMbiopsieswereharvestedfromasubsetof5animalspergestational×postnataltreatment fromthemainherdat~78daysofage,~187days,andduringthelastweekpriortoharvest (~354days).Selectionofsteerprogenyforbiopsywasperformedbasedon2criteria:first,off- springforbiopsywereselectedbasedontheirdam’sperformance.Onlyoffspringfromcows whoseBWandBWchangeduringlategestationwaswithin½ofastandarddeviationoneither sideofthemean(LPNorMPN)wereconsideredforbiopsy.SelectingbasedoncowBWand BWchangeensuredthatonlycalvesfromcowsthatwererepresentativeoftheirtreatment wereutilizedfortranscriptomics.Thefinalselectionofsteersforbiopsywasbasedonsteer BW.OnlysteerswhoseBWwaswithin½ofastandarddeviationoneithersideofthemean wereutilized.Thisselectioncriterionstrategyminimizedtheeffectsofvariationindam’smilk production,whichwasnotsignificantlydifferentbetweenLPNandMPNtreatments[8]. Transcriptomicswasperformedwithatranscriptome-widebovinemicroarray(Agilent- 015354BovineOligoMicroarray-4x44K)thatcontains21,475uniquegenesandtranscriptsof BosTaurus,withtwoprobespergene.Themethodsusedforhybridizationandscanningwere accordingtomanufacturer’sprotocolsandLooretal[10].Themicroarraydataweredeposited intheNationalCenterforBiotechnologyInformation(NCBI)GeneExpressionOmnibus (GEO)database(http://www.ncbi.nlm.nih.gov/gds)withaccessionnumberGSE65560. Datamining TheentiremicroarraydatasetwithassociatedstatisticalP-valueswereimportedintoIngenuity PathwaysAnalysis(IPA,www.ingenuity.com)inordertoexaminethenumberofactivated andinhibiteddifferentiallyexpressedgenes(DEG).EntrezGeneIDswereusedtoidentifyindi- vidualsequences. Statisticalanalysis Datafromthemicroarrayanalysiswerenormalizedfordyeandmicroarrayeffects(i.e.,Lowess normalizationandarraycentering)andusedforstatisticalanalysis.TheMIXEDprocedureof SAS(SASInstitute,Inc.,Cary,NC,USA)wasusedforstatisticalanalysis.Fixedeffectswere treatment(EW,NW),diet(LPN,MPN),time(78,187,and354daysofage),first,secondand thirdorderinteractionsbetweendiet,timeandtreatment,anddye(Cy3,Cy5)andrandom effectsincludedsteerandmicroarray.RawPvalueswereadjustedusingBenjaminiandHoch- berg’sfalsediscoveryrate(FDR). Thestatisticalmodelusedwas:Yijklm=μ+T +D +W +S +(T×D) +(D×W) + i j k l ij jk (T×W) +(D×T×W) +ε ;where,Y isthebackground-adjustednormalizedfold ik ijk ijklm ijklm changevalue;μistheoverallmean;T isthefixedeffectoftime(3levels);D isthefixedeffect i j ofcowplaneofnutrition(2levels);W isthefixedeffectofweaningage(2levels);S istheran- k l domeffectofsteernestedwithintreatment;T×D,D×W,T×Waretheinteractionsoftime bydiet,dietbyweanandtimebywean,respectively;D×T×Wistheinteractionofthird orderforthemaineffects;andε istherandomerror(0,σ 2)associatedwithY .All ijklm e ijklm meanswerecomparedusingthePDIFFstatementofSAS(SASInstitute,Inc.,Cary,NC,USA). StatisticalsignificancewasdeclaredatP(cid:1)0.05andFDR(cid:1)0.10.Animalfeedlotperformance, carcassqualityparameters,ultrasoundandblooddatawerealsoanalyzedusingtheMIXED procedureofSAS,andtreatmentwasthefixedeffectinthestatisticalmodel.Therandomeffect inallmodelswassteerwithintreatment. PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 4/20 NeonatalNutritionAltersOffspringMuscleTranscriptome Dynamicimpactapproach(DIA) BioinformaticsanalysisofmicroarraydatawasperformedusingDIA[11]andinformation fromthefreely-availableonlinedatabasesKyotoEncyclopediaofGenesandGenomes(KEGG) andDatabaseforAnnotation,Visualization,andIntegratedDiscovery(DAVID)v6.7data- bases.Alistofgeneidentifiers(EntrezGeneIDs)wasuploadedallatoncetoextractandsum- marizefunctionalannotationsassociatedwithgroupsofgenesorwitheachindividualgene. Thesignificancevalueassociatedwithbiologicalprocessesandpathwaysisameasureofthe likelihoodthatthedistributionofDEGinthesepathwaysandbiologicalprocessesisdueto chance.ThesignificanceisexpressedasaP-value,whichiscalculatedusingtheright-tailed Fisher'sExactTestandadjustedusingFDR.DetailsoftheDIAapproachanditsvalidation havebeenreportedpreviously[11].Theinterpretationofthebioinformaticsanalysiswasper- formedfollowingthesameapproachasourpreviousstudy[12]. Results Animalperformance Performancedatafortheentiregroupofanimalsonstudyarereportedelsewhere[8].Feedlot performanceofEWandNWsteersusedfortranscriptomicsispresentedinTable2.Onlyini- tialBWatthetimesteersenteredthefeedlotwassignificant(P<0.01)withEWsteersbeing heavierascomparedwithNWsteers.Drymatterintake(DMI)washigherforMPNas Table2. Feedlotperformance,ultrasoundmeasurementsandcarcassqualityparametersforAngus×Simmentalsteers(n=20)fromcowsthat receivedalow(LPN)oramedium(MPN)planeofnutrition(D)duringthelategestationperiod. Weaningtimes(W)areearlyweaning(EW)andnormal weaning(NW). Treatments EW NW P-value1 Item LPN MPN LPN MPN SEM D W D*W FeedlotPerformance InitialBW 258 278 212 204 18.25 0.73 <0.01 0.42 FinalBW2 548 581 524 533 19.78 0.26 0.07 0.52 ADG(kg/d) 1.74 1.66 1.81 1.69 0.15 0.40 0.56 0.85 DMI(kg/d) 7.84 9.33 8.18 8.48 0.41 0.03 0.52 0.14 Ultrasoundmeasurements BFatEW(cm) 0.31 0.35 0.33 0.34 0.02 0.13 0.71 0.52 BFatNW(cm) 0.33 0.33 0.31 0.33 0.02 0.54 0.57 0.74 MarblingatEW 427 388 434 419 27.80 0.30 0.48 0.65 MarblingatNW 330 409 376 418 40.41 0.13 0.47 0.63 Carcassqualityparameters HCW(kg) 340 360 325 331 12.27 0.27 0.07 0.51 CalculatedYG 3.0 3.0 2.5 2.3 0.27 1.00 0.03 1.00 LMarea(cm2) 77.3 82.5 78.6 79.4 3.27 0.34 0.76 0.48 Marbling 418 573 480 482 43.13 0.07 0.72 0.07 Backfatthickness(cm) 1.24 1.37 1.30 1.12 0.13 0.83 0.41 0.22 KPH(%) 2.1 2.1 2.3 2.1 0.12 0.29 0.28 0.70 Daystoharvest 367 377 392 412 11.10 0.16 0.01 0.59 1D=cowplaneofnutritioneffect(diet),W=weaningageeffect,D×W=diet×weaninginteraction. 2Basedon62%dressingpercentage. doi:10.1371/journal.pone.0131478.t002 PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 5/20 NeonatalNutritionAltersOffspringMuscleTranscriptome comparedwithLPNsteers(P=0.03).UltrasoundatthetimeofEW(78daysofage)revealed nosignificantdifferences(P>0.05)betweentreatments(i.e.allpossiblecombinationsbetween weaningageandcowplaneofnutrition)formarblingandbackfatthickness(Table2). Hotcarcassweightdidnotdiffer(P>0.10)(Table2).Calculatedyieldgradehadaweaning effect(P=0.03)withlowervaluesforNWascomparedwithEWsteers.Marblingscorewas greater(P=0.07)forEW-MPNsteers.Lastly,therewasaweaningeffect(P=0.01)associated withEWsteersreachingtheback-fatthicknesstargetend-pointearlierthanNWsteers (Table2). Serumglucoseconcentrationhadasignificanttimeeffect(P<0.05)withlowervaluesat 296daysofage(Fig1).Adiponectinconcentrationhadasignificantcowplaneofnutrition (diet),time,anddiet×timeinteraction(P<0.05)withincreasingconcentrationsbetween78 and187daysofageandaswitchtodecreasingconcentrationsafter187daysofageforNW steers,butserumadiponectindidnotchangeforEWsteers(Fig1).Insulinconcentrationwas affectedbyweaningage,time,andweaning×time(P<0.05)witharelativelyconstantcon- centrationbetween78and187daysofageforalltreatmentsandanoticeableincreaseincon- centrationbetween187and296daysofage(Fig1). Microarrayanalysis AtanFDR<0.10(uncorrectedPvalue<0.05),atotalof35DEGwereaffectedoverallbythe cowplaneofnutrition(Table3),145DEGwereaffectedbyweaningtimeand7,639DEGwere affectedbytime.Inaddition,therewere13DEGforthetime×wean×dietinteraction (Table4),43DEGforthetime×diet,31DEGforthewean×dietinteraction,and167DEG forthewean×timeinteraction.The167DEGforthewean×timeinteractionwereanalyzed separatelyforEWandNWsteers:between78and187daysofage,187and354daysofageand between87and354daysofage.ForthisanalysisweutilizedacutoffPvalue<0.05forany givencomparison(Fig2). Whenfocusingonthe167DEGduetotime×treatmentinteraction,thehighestnumberof DEG,91down-regulatedand44upregulated(uncorrectedPvalue<0.05;FDR<0.10),were detectedinEWsteersbetween78and187daysofage(Fig2).Duringthesametime-frame, NWsteershadthelowestDEGwith53downregulatedand4upregulatedgenes(uncorrectedP value<0.05;FDR<0.10).ItisnoteworthythatthenumberofDEGinNWsteersincreased markedlybetween187and354daysofage.Thus,whencomparingtheresponsesbetween78 and354dayofage,EWandNWsteershadasimilarnumberofDEG(Fig2). TheDIAanalysiswasperformedwithDEG(n=167)atanuncorrectedPvalue=0.05and anFDR=0.10.Fig3containsthesummaryofKEGGpathwaysresultsfromDIA.Thetop- threemostimpactedcanonicalpathwaysarereportedinFig4andthegeneswithhighestacti- vationinFig5.Forbiologicalprocesses,onlythosewithanimpactvaluehigherthan50%of themaximumtotalimpactvalueforeachtimecomparisonforEWandNWsteersaredis- cussed(Fig6). TheDIAanalysisrevealedthatfattyacidbiosyntheticprocess,biosynthesisofunsaturated fattyacids,andinsulinsignalingwerehighly-activatedinEWsteersbetween78and187days ofage(Fig4).Analysesfurtherrevealedthatactivationofthesepathwayswasnamelydueto upregulationofFASN(lipogenicenzyme),SCD(monounsaturatedfattyacidsynthesis)and PCK2(involvedinglyceroneogenesis)(Fig5).IncontrasttoEWsteers,between78and187 daysofageNWsteershadahigherimpactwithnoapparentdirectionofthecytochrome P450-relatedpathwaysandGlutathioneMetabolism(Fig4). Between187and354daysofageinEWsteerstherewasasignificantnegativeimpacton Pyrimidinemetabolism(NucleotideMetabolismSubcategorywithintheMetabolismKEGG PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 6/20 NeonatalNutritionAltersOffspringMuscleTranscriptome Fig1.Glucose,adiponectinandinsulinserumconcentrationsinAngus×Simmentalsteersfrom cowsthatreceivedalow(LPN)ormedium(MPN)planeofnutritionduringthelategestationperiod. Weaningtimesareearlywean(EW)andnormalwean(NW).*Weaning,**Diet,***Time,#weaning×diet, ##weaning×time,###diet×timeand$time×weaning×dietinteractioneffects(P<0.05). doi:10.1371/journal.pone.0131478.g001 Category),RNApolymerase(TranscriptionSubcategorywithintheGeneticInformationPro- cessingKEGGCategory)andCytosolicDNAsensingpathway(ImmuneSystemSubcategory withintheOrganismalSystemKEGGCategory)(Fig4).Polymerase(RNA)III(DNAdirected) polypeptideA,155kDa(POLR3A)wastheonlyDEGthatcouldexplaintheinhibitionofthese pathways(Fig5).InthecaseofNWsteersbetween187and354daysofage,Biosynthesisof unsaturatedfattyacids,FattyacidbiosynthesisandGlycerophospholipidmetabolism(all withintheKEGGLipidMetabolismSubcategory)werethemost-impactedandactivatedpath- ways(Fig4).Between78and354daysofage,FattyacidbiosynthesisandBiosynthesisof PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 7/20 NeonatalNutritionAltersOffspringMuscleTranscriptome Table3. Symbol,entrezgeneID,logratioexpressionvalue[lowplaneofnutrition(LPN)vs.mediumplaneofnutrition(MPN],typeofmoleculeand localizationinthecellforthe35differentiallyexpressedgenesaffectedbycowplaneofnutrition. Symbol EntrezGeneName LogRatio p-value Location1 Type(s)2 ABHD11 abhydrolasedomaincontaining11 0.30 8.74E-06 Cytoplasm enzyme ACLY ATPcitratelyase 0.35 7.74E-05 Cytoplasm enzyme AGPAT6 1-acylglycerol-3-phosphateO-acyltransferase6 -0.22 5.90E-05 Cytoplasm enzyme ARAP1 ArfGAPwithRhoGAPdomain,ankyrinrepeatandPHdomain1 -0.44 1.53E-04 Cytoplasm other ART3 ADP-ribosyltransferase3 -0.78 4.64E-05 PlasmaMemb. enzyme ATP5S ATPsynthase,H+transporting,mitochondrialFocomplex,subunits 0.33 1.09E-04 Cytoplasm transporter C15orf40 chromosome15openreadingframe40 -0.21 1.72E-04 Other other C8orf48 chromosome8openreadingframe48 -0.72 2.18E-05 Other other CARD14 caspaserecruitmentdomainfamily,member14 0.96 4.31E-05 Cytoplasm other CHST12 carbohydrate(chondroitin4)sulfotransferase12 0.78 5.32E-05 Cytoplasm enzyme DEXI Dexihomolog(mouse) 0.29 1.50E-04 Other other DHDH dihydrodioldehydrogenase(dimeric) 0.40 8.49E-08 Other enzyme DYNLL1 dynein,lightchain,LC8-type1 0.47 2.29E-05 Cytoplasm other EDC3 enhancerofmRNAdecapping3 0.55 2.31E-05 Cytoplasm other EHD4 EH-domaincontaining4 0.60 1.39E-04 PlasmaMemb. enzyme ENTPD2 ectonucleosidetriphosphatediphosphohydrolase2 0.53 7.24E-05 Cytoplasm enzyme EPC1 enhancerofpolycombhomolog1(Drosophila) -0.28 9.13E-05 Nucleus TR FCAR FcfragmentofIgA,receptorfor -0.52 6.40E-05 PlasmaMemb. other GSTA4 glutathioneS-transferase,alpha4 -1.74 1.37E-05 Other enzyme HLF hepaticleukemiafactor 0.72 1.69E-04 Nucleus TR IQGAP1 IQmotifcontainingGTPaseactivatingprotein1 -0.55 5.28E-05 Cytoplasm other KRT74 keratin74 -1.01 7.04E-05 Cytoplasm other LOC789391 tRNAmethyltransferasecatalyticsubunitTRMT61Alike -0.76 1.07E-04 Nucleus enzyme MARCH7 membrane-associatedringfinger7,E3ubiquitinproteinligase -0.62 7.57E-09 Extracell.Space other MSRB1 methioninesulfoxidereductaseB1 -0.49 3.86E-05 Other other NR2C2 nuclearreceptorsubfamily2,groupC,member2 -0.27 7.21E-05 Nucleus LDNR NSMCE4A non-SMCelement4homologA(S.cerevisiae) 0.34 1.67E-04 Nucleus other PNMAL1 paraneoplasticMaantigenfamily-like1 0.89 1.31E-04 Other other PSPH phosphoserinephosphatase 0.74 1.62E-04 Cytoplasm phosphatase PYCR1 pyrroline-5-carboxylatereductase1 0.47 8.97E-05 Cytoplasm enzyme SCUBE1 signalpeptide,CUBdomain,EGF-like1 1.05 1.03E-04 PlasmaMemb. transm.receptor SERF1A smallEDRK-richfactor1A(telomeric) 0.41 1.48E-04 Other other SRSF5 serine/arginine-richsplicingfactor5 -0.53 9.98E-05 Nucleus other TAGLN3 transgelin3 0.34 1.17E-04 ExtracellSpace other TOMM34 translocaseofoutermitochondrialmembrane34 0.36 1.14E-04 Cytoplasm other 1Extracell.Space=extracellularspace;PlasmaMemb.=plasmamembrane;Greceptor=Gproteincoupledreceptor. 2TR=transcriptionregulator;LDNR—ligand-dependentnuclearreceptor;Transm.Receptor=transmembranereceptor. doi:10.1371/journal.pone.0131478.t003 unsaturatedfattyacidswerethemost-impactedandactivatedpathwaysinbothEWandNW, buttheactivationofthesepathwaystookplaceatdifferenttimepoints(Fig4). Whenwefocusonthebiologicalprocesses(BP),between78and187daysofageinEW steerstherewasaclearactivationoftheBPrelatedtoadipogenesisandlipogenesis(Fig6).Bio- syntheticprocessandfattyacidbiosyntheticprocesshadthehighestimpact,withalower impactdetectedforfattyacidelongationofsaturatedfattyacids,long-chainfattyacidbiosyn- theticprocessandregulationoftriglyceridebiosyntheticprocess(Fig6).Between78and187 PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 8/20 NeonatalNutritionAltersOffspringMuscleTranscriptome Table4. Symbol,entrezgeneID,logratioexpressionvalue,typeofmoleculeandlocalizationinthecellforthe13differentiallyexpressedgenes affectedbytheweaning×diet×timeinteraction. Symbol EntrezGeneName LogRatio p-value Location1 Type(s)2 ARID1A ATrichinteractivedomain1A(SWI-like) 2.885 2.04E-04 Nucleus TR BTG1 B-celltranslocationgene1,anti-proliferative -1.262 2.07E-03 Nucleus TR EPAS1 endothelialPASdomainprotein1 -1.797 2.08E-01 Nucleus TR HSBP1 heatshockfactorbindingprotein1 1.064 2.38E-02 Nucleus TR IMPG1 interphotoreceptormatrixproteoglycan1 1.577 2.22E-05 Extracell.Space other KIAA0232 KIAA0232 1.889 3.33E-04 Extracell.Space other KRTDAP keratinocytedifferentiation-associatedprotein -12.672 8.49E-01 Extracell.Space other MARK4 MAP/microtubuleaffinity-regulatingkinase4 -1.247 2.99E-02 Cytoplasm kinase NME1 NME/NM23nucleosidediphosphatekinase1 -5.373 1.17E-01 Cytoplasm kinase OR51F1 olfactoryreceptor,family51,subfamilyF,member1 -1.393 4.66E-04 PlasmaMemb. Greceptor OTX1 orthodenticlehomeobox1 -3.683 2.31E-01 Nucleus TR PLAGL1 pleiomorphicadenomagene-like1 1.313 5.06E-03 Nucleus TR SLC25A5 solutecarrierfamily25,member5 -4.401 2.36E-01 Cytoplasm transporter 1Extracell.Space=extracellularspace;PlasmaMemb.=plasmamembrane. 2TR=trascriptionregulator;Greceptor=Gproteincoupledreceptor. doi:10.1371/journal.pone.0131478.t004 Fig2.Differentiallyexpressedgenes(DEG;FDR<0.10anduncorrectedPvalue<0.05)inearlywean (EW)andnormalwean(NW)steersduringthegrowing(78to187daysofage),finishing(187to354 daysofage)andgrowingandfinishingphases(78to354daysofage).NumberofDEGforeach comparisonarethosewithoverallFDR<0.10,uncorrectedPvalue<0.05,andP<0.05betweenthespecific timecomparisons. doi:10.1371/journal.pone.0131478.g002 PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 9/20 NeonatalNutritionAltersOffspringMuscleTranscriptome Fig3.DynamicImpactApproach(DIA)ofdifferentiallyexpressedgenes(Pvalue<0.05;FDR<0.10) ontheKyotoEncyclopediaofGenesandGenomes(KEGG)Pathwaysdatabase.Fluxrepresentsthe directionofeachcategoryandthecorrespondingsubcategory(greencolor=inhibition,yellowcolor=stable, redcolor=activationwithdifferentcolorintensitiesaccordingwiththelevelofup-regulationordown- regulation).Bluebarsdenotetheimpactofeachcategoryandthecorrespondingsubcategories. doi:10.1371/journal.pone.0131478.g003 Fig4.Resultsofthe3mostimpactedpathwayswithindifferentiallyexpressedgenesaffectedduringthegrowingphase(187vs.78d),finishing phase(354vs.187d)andthewholeexperiment(354vs.78d).AnalysisperformedusingtheDynamicImpactApproach(DIA)basedontheKyoto EncyclopediaofGenesandGenomes(KEGG)Pathwaysdatabase.Fluxrepresentsthedirectionofeachcategoryandthecorrespondingsubcategory (greencolor=inhibition,yellowcolor=stable,redcolor=activationwithdifferentcolorintensitiesaccordingwiththelevelofup-regulationordown- regulation).Bluebarsdenotetheimpactofeachbiologicalprocess. doi:10.1371/journal.pone.0131478.g004 PLOSONE|DOI:10.1371/journal.pone.0131478 July8,2015 10/20

Description:
plane of maternal nutrition during late-gestation and weaning age alter the offspring's Long- issimus muscle . 23.9. 25.3. Acid detergent fiber. 14.1. 14.3. Crude fat. 5.3. 5.1. 1Age at weaning: EW = 78 ± 11 days of age; NW = 186 ± 11 days of age. 2MWDGS = Modified Wet Distillers Grains with Solu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.