ebook img

Materials for Carbon Capture PDF

375 Pages·2020·26.058 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Materials for Carbon Capture

(cid:2) Materials for Carbon Capture (cid:2) (cid:2) (cid:2) (cid:2) Materials for Carbon Capture Edited by De-en Jiang DepartmentofChemistry,UniversityofCalifornia, Riverside,CA,USA Shannon M. Mahurin ChemicalSciencesDivision,OakRidgeNationalLaboratory, OakRidge,TN,USA (cid:2) (cid:2) Sheng Dai ChemicalSciencesDivision,OakRidgeNationalLaboratory, OakRidge,TN,USA DepartmentofChemistry,UniversityofTennessee, Knoxville,TN,USA (cid:2) (cid:2) Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions. TherightofDe-enJiang,ShannonM.MahurinandShengDaitobeidentifiedastheauthorsofthe editorialmaterialinthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe (cid:2) instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand (cid:2) authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasa citationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrendering professionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation. Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitis read.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationDataappliedfor HardbackISBN:9781119091172 CoverDesign:Wiley CoverImage:CourtesyofDe-enJiang Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) v Contents ListofContributors xi Preface xv Acknowledgments xvii 1 Introduction 1 De-enJiang,ShannonM.MahurinandShengDai References 3 2 CO CaptureandSeparationofMetal–OrganicFrameworks 5 2 (cid:2) XueyingGeandShengqianMa (cid:2) 2.1 Introduction 5 2.1.1 CO CaptureProcess 7 2 2.1.2 IntroductiontoMOFsforCO CaptureandSeparation 7 2 2.2 EvaluationTheory 8 2.2.1 IsostericHeatofAdsorption(Q ) 8 st 2.2.1.1 TheVirialMethod1 9 2.2.1.2 TheVirialMethod2 9 2.2.1.3 TheLangmuir–FreundlichEquation 9 2.2.2 IdealAdsorbedSolutionTheory(IAST) 10 2.3 CO CaptureAbilityinMOFs 10 2 2.3.1 OpenMetalSite 10 2.3.2 PoreSize 11 2.3.3 PolarFunctionalGroup 13 2.3.4 Incorporation 14 2.4 MOFsinCO CaptureinPractice 14 2 2.4.1 Single-ComponentCO CaptureCapacity 14 2 2.4.2 BinaryCO CaptureCapacityandSelectivity 16 2 2.4.3 OtherRelatedGas-SelectiveAdsorption 19 2.5 MembraneforCO Capture 19 2 2.5.1 PureMOFMembraneforCO Capture 20 2 2.5.2 MOF-BasedMixedMatrixMembranesforCO Capture 20 2 (cid:2) (cid:2) vi Contents 2.6 ConclusionandPerspectives 21 Acknowledgments 21 References 21 3 PorousCarbonMaterials 29 Xiang-QianZhangandAn-HuiLu 3.1 Introduction 29 3.2 DesignedSynthesisofPolymer-BasedPorousCarbonsasCO Adsorbents 30 2 3.2.1 Hard-TemplateMethod 31 3.2.1.1 PorousCarbonsReplicatedfromPorousSilica 31 3.2.1.2 PorousCarbonsReplicatedfromCrystallineMicroporousMaterials 33 3.2.1.3 PorousCarbonsReplicatedfromColloidalCrystals 35 3.2.1.4 PorousCarbonsReplicatedfromMgONanoparticles 36 3.2.2 Soft-TemplateMethod 38 3.2.2.1 CarbonMonolith 38 3.2.2.2 CarbonFilmsandSheets 45 3.2.2.3 CarbonSpheres 48 3.2.3 Template-FreeSynthesis 49 3.3 PorousCarbonsDerivedfromIonicLiquidsforCO Capture 53 2 3.4 PorousCarbonsDerivedfromPorousOrganicFrameworksforCO Capture 56 2 3.5 PorousCarbonsDerivedfromSustainableResourcesforCO Capture 61 2 (cid:2) 3.5.1 DirectPyrolysisand/orActivation 63 (cid:2) 3.5.2 Sol–GelProcessandHydrothermalCarbonizationMethod 64 3.6 CriticalDesignPrinciplesofPorousCarbonsforCO Capture 67 2 3.6.1 PoreStructures 67 3.6.2 SurfaceChemistry 72 3.6.2.1 Nitrogen-ContainingPrecursors 72 3.6.2.2 High-TemperatureReactionandTransformation 76 3.6.2.3 Oxygen-ContainingorSulfur-ContainingFunctionalGroups 77 3.6.3 CrystallineDegreeofthePorousCarbonFramework 81 3.6.4 FunctionalIntegrationandReinforcementofPorousCarbon 83 3.7 SummaryandPerspective 88 References 89 4 PorousAromaticFrameworksforCarbonDioxideCapture 97 TengBenandShilunQiu 4.1 Introduction 97 4.2 CarbonDioxideCaptureofPorousAromaticFrameworks 98 4.3 StrategiesforImprovingCO UptakeinPorousAromaticFrameworks 98 2 4.3.1 ImprovingtheSurfaceArea 98 4.3.2 HeteroatomDoping 99 4.3.3 TailoringthePoreSize 102 4.3.4 PostModification 103 4.4 ConclusionandPerspectives 114 References 114 (cid:2) (cid:2) Contents vii 5 VirtualScreeningofMaterialsforCarbonCapture 117 AmanJain,RavichandarBabaraoandAaronW.Thornton 5.1 Introduction 118 5.2 ComputationalMethods 118 5.2.1 MonteCarlo-BasedSimulations 118 5.2.2 MDSimulation 122 5.2.3 DensityFunctionalTheory 122 5.2.4 Empirical,Phenomenological,andFundamentalModels 123 5.2.4.1 LangmuirandOthers 124 5.2.4.2 IdealAdsorbedSolutionTheory(IAST) 124 5.2.5 MaterialsGenomeInitiative 126 5.2.6 High-ThroughputScreening 127 5.3 Adsorbent-BasedCO Capture 129 2 5.3.1 DirectAirCapture 130 5.4 Membrane-BasedCO Capture 131 2 5.5 CandidateMaterials 131 5.5.1 MetalOrganicFrameworks 131 5.5.2 Zeolites 132 5.5.3 ZeoliticImidiazolateFrameworks 133 5.5.4 MesoporousCarbons 133 5.5.5 GlassyandRubberyPolymers 133 (cid:2) 5.6 PorousAromaticFrameworks 134 (cid:2) 5.7 CovalentOrganicFrameworks 135 5.8 CriteriaforScreeningCandidateMaterials 135 5.8.1 CO Uptake 135 2 5.8.2 WorkingCapacity 136 5.8.3 Selectivity 137 5.8.4 Diffusivity 137 5.8.5 Regenerability 138 5.8.6 BreakthroughTimeinPSA 138 5.8.7 HeatofAdsorption 138 5.9 In-SilicoInsights 138 5.9.1 EffectofWaterVapor 138 5.9.2 EffectofMetalExchange 141 5.9.3 EffectofIonicExchange 142 5.9.4 EffectofFrameworkCharges 142 5.9.5 EffectofHigh-DensityOpenMetalSites 144 5.9.6 EffectofSlipping 145 References 145 6 UltrathinMembranesforGasSeparation 153 ZiqiTian,SongWang,ShengDaiandDe-enJiang 6.1 Introduction 153 6.2 PorousGraphene 155 6.2.1 ProofofConcept 155 (cid:2) (cid:2) viii Contents 6.2.2 ExperimentalConfirmation 156 6.2.3 MoreRealisticSimulationstoObtainPermeance 158 6.2.4 FurtherSimulationsofPorousGraphene 160 6.2.5 EffectofPoreDensityonGasPermeation 161 6.3 Graphene-Derived2DMembranes 163 6.3.1 Poly-phenyleneMembrane 163 6.3.2 GraphyneandGraphdiyneMembranes 165 6.3.3 GrapheneOxideMembranes 166 6.3.4 2DPorousOrganicPolymers 166 6.4 PorousCarbonNanotube 168 6.5 PorousPorphyrins 172 6.6 FlexibleControlofPoreSize 174 6.6.1 Ion-GatedPorousGrapheneMembrane 174 6.6.2 BilayerPorousGraphenewithContinuouslyTunablePoreSize 176 6.7 SummaryandOutlook 178 Acknowledgments 179 References 179 7 PolymericMembranes 187 JasonE.BaraandW.JeffreyHorne 7.1 Introduction 187 (cid:2) 7.1.1 OverviewofPost-CombustionCO Capture 187 (cid:2) 2 7.1.2 PolymerMembraneFundamentalsandProcess Considerations 189 7.2 PolymerTypes 193 7.2.1 Poly(EthyleneGlycol) 193 7.2.2 PolyimidesandThermallyRearrangedPolymers 195 7.2.3 PolymersofIntrinsicMicroporosity(PIMs) 196 7.2.4 Poly(IonicLiquids) 197 7.2.5 OtherPolymerMaterials 198 7.3 FacilitatedTransport 199 7.4 PolymerMembraneContactors 202 7.5 SummaryandPerspectives 203 References 204 8 CarbonMembranesforCO Separation 215 2 KuanHuangandShengDai 8.1 Introduction 215 8.2 Theory 216 8.3 GrapheneMembranes 217 8.4 CarbonNanotubeMembranes 221 8.5 CarbonMolecularSieveMembranes 222 8.6 ConclusionsandOutlook 230 Acknowledgments 230 References 231 (cid:2) (cid:2) Contents ix 9 CompositeMaterialsforCarbonCapture 237 SuneeWongchitphimon,SiewSiangLee,ChongYangChuah,RongWangand Tae-HyunBae 9.1 Introduction 237 9.1.1 TechnologiesforCO Capture 238 2 9.1.2 CompositeMaterialsforAdsorptiveCO Capture 239 2 9.1.3 CompositeMaterialsforMembrane-BasedCO Capture 240 2 9.2 FillersforCompositeMaterials 242 9.2.1 Zeolites 242 9.2.2 Metal–OrganicFrameworks 243 9.2.3 OtherParticulateMaterials–CarbonMolecularSievesandMesoporous Silica 247 9.2.4 1-DMaterials–CarbonNanotubes 247 9.2.5 2-DMaterials–LayeredSilicateandGraphene 248 9.3 Non-IdealityofFiller/PolymerInterfaces 250 9.3.1 Sieve-in-a-Cage 251 9.3.2 PolymerMatrixRigidification 253 9.3.3 PluggedFillerPores 253 9.4 CompositeAdsorbents 253 9.5 CompositeMembranes(Mixed-MatrixMembranes) 255 9.6 ConclusionandOutlook 256 (cid:2) References 260 (cid:2) 10 Poly(Amidoamine)DendrimersforCarbonCapture 267 IkuoTaniguchi 10.1 Introduction 267 10.2 Poly(Amidoamine)inCO Capture 269 2 10.2.1 ABriefHistory 269 10.2.2 ImmobilizationofPAMAMDendrimers 270 10.2.2.1 ImmobilizationinCrosslinkedChitosan 270 10.2.2.2 ImmobilizationinCrosslinkedPoly(VinylAlcohol) 273 10.2.2.3 ImmobilizationinCrosslinkedPEG 275 10.3 FactorstoDetermineCO SeparationProperties 276 2 10.3.1 VisualizationofPhase-SeparatedStructure 276 10.3.2 EffectofHumidity 280 10.3.3 EffectofPhase-SeparatedStructure 281 10.4 CO -SelectiveMolecularGate 284 2 10.5 EnhancementofCO SeparationPerformance 286 2 10.6 ConclusionandPerspectives 288 Acknowledgments 291 References 291 11 IonicLiquidsforChemisorptionofCO 297 2 MingguangPanandCongminWang 11.1 Introduction 297 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.