Materials and anti-adhesive issues in UV-NIL Achille Francone To cite this version: Achille Francone. Materials and anti-adhesive issues in UV-NIL. Materials. Institut National Poly- technique de Grenoble - INPG, 2010. English. NNT: . tel-00666073 HAL Id: tel-00666073 https://theses.hal.science/tel-00666073 Submitted on 3 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE L’UNIVERSITE DE GRENOBLE Délivrée par l’Institut Polytechnique de Grenoble N° attribué par la bibliothèque |__|__|__|__|__|__|__|__|__|__| T H E S E pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE GRENOBLE Spécialité : « 2MGE Matériaux, Mécanique, Génie civil, Electrochimie » préparée au Laboratoire des Technologies de la Microélectronique (LTM-CNRS) dans le cadre de l’Ecole Doctorale « I-MEP2 Ingénierie Matériaux Mécanique Energétique Environnement Procéés Production » présentée et soutenue publiquement par Achille FRANCONE Le 9 Décembre 2010 Materials and anti-adhesive issues in UV-NIL Directeur de thèse: BOUSSEY Jumana JURY Président M.me AUZELY-VELTY Rachel Prof. à Université Joseph Fourier, Grenoble (France) Rapporteur M. SCHLATTER Guy Prof. à Université de Strasbourg, Strasbourg (France) Rapporteur M. SOPPERA Olivier Chargé de recherche CNRS-IS2M, Mulhouse (France) Directeur de thèse M.me BOUSSEY Jumana Chargé de recherche CNRS-LTM, Grenoble (France) Examinateur M. ZELSMANN Marc Chargé de recherche CNRS-LTM, Grenoble (France) Examinateur M. KEHAGIAS Nikolaos Postdoctorant ICN , Bellaterra (Espagne) Invité M.me IOJOIU Cristina Chargé de recherche CNRS-LEPMI, Grenoble (France) 2 Acknowledgments Although a lot of efforts were necessary to write this PhD thesis, I feel really satisfied about the final result. A lot of persons contributed directly and indirectly, more or less, to the achievement of this work. I am grateful to all the persons that accepted to participate to the jury of my thesis: Pr. AUZELY-VELTY Rachel, Dr. KEHAGIAS Nikolaos, Dr. IOJOIU, Cristina, Dr. ZELSMANN Marc, Dr. BOUSSEY Jumana, Dr. SOPPERA and Pr. SCHLATTER Guy, with the last two that accepted to evaluate my manuscript as rapporteurs. I really appreciated the hospitality shown during this three-year thesis work at the Laboratoire des Technologies de la Microélectronique (LTM) in Grenoble (France) inside the CEA-LETI-Minatec center. I would like indeed to thank Dr. JOUBERT Olivier t, LTM Head, for enabling me to carry out this work in an excellent technical and scientific environment. I am grateful to Région Rhône-Alpes for financing my three years PhD fellowship. Special thanks go to Dr. BOUSSEY Jumana my thesis director for having made this work possible. She launched me on this adventure, and I have received high-value support from her throughout the thesis. Her patience in front of difficult situations taught me a lot. Sincere thanks go to Dr. ZELSMANN Marc, my daily supervisor at LTM lab, with whom I have spent uncountable hours engaged in enjoyable and enriching discussions. His broad background in physics and engineering, his sportive spirit, his rigorous work and his methodology have contributed significantly to my scientific and human apprenticeship. Then, I would like to thank a group of persons for the nice collaborations we had during my PhD, managing to get interesting results during different kinds of experiments. These persons are: Dr. POULAIN Christophe during nanoindentation experiments at CEA Grenoble-LETI- DIHS-Laboratoire de Caractérisation et de Fiabilité des Microsystèmes; LOMBARD Christophe and Dr. PEPIN-DONAT Brigitte during electron spin resonance experiments at CEA Grenoble-INAC- Laboratoire de Structure et Propriétés d’Architecture Moléculaires; Dr. IOJOIU, Cristina during Fourier Transform Infrared Spectroscopy experiments at CNRS- Grenoble Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces. During my Phd I had also the possibility to collaborate and to run experiments away from Grenoble. In particular I had the pleasure to collaborate with Dr. ZOMPATORI Alberto, dependent of SOLVAY Solexis S.p.A., who hosted me in the Italian research and development centre at Bollate to select an anti-adhesive commercial product. His collaboration continued during all the experiments run on the product, giving precious advices over the interpretation of the results. Many thanks go to HAATAINEN Tomi, that although several difficulties allows to me to run a week demolding force experiments in the Finnish VTT technical research centreat Espoo. Particular acknowledgments go to Pr. SOTOMAYOR TORRES Clivia who allowed to me to join her Spanish group, ICN Phononic and Photonics Nanostructures Group, at Bellaterra. I spent seventh months of my Phd working with this group and it was a great experience under human and professional point of view. I found a wonderful atmosphere thanks to Nik, Vincent, Olivier, Damien, John, Michael, Sinead. 3 I cannot forget about all the friends that shared unforgettable experiences with me in Grenoble (sports, parties, trips, etc.) and that determined my positive judgment over the time I spent in France during my PhD. A million thanks to my beloved family members back home in Italy, that encouraged me throughout the PhD time, sharing positive and negative moments. Last but not least, my sincere thanks go to my lovely girlfriend Chiara, which gave me the moral support and motivations to go on, especially during the most critical moments of the PhD thesis writing period. 4 Preface The works of research obtained after my three year Phd were well valorized. In fact, the results were presented during different events (international conferences, scientific day, summer school) and in different manners (journal publications, poster and oral presentations). These are listed below. Journal Publications 1) D. Boutry, R. Galand, A. Beaurain, A. Francone, B. Pelissier, M. Zelsmann, and J. Boussey, “Mold cleaning and fluorinated anti-sticking treatments in nanoimprint lithography”, Microelectron Eng, 86 (4-6), p. 669-672, 2009. 2) M. Zelsmann, C. Alleaume, D. Boutry, A. Francone, A. Beaurain, B. Pelissier and J. Boussey, “Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatments in UV nanoimprint lithography”, Microelectron Eng, 87 (5-8), p. 1029-1032, 2010. 3) M. Zelsmann, D. Boutry, A. Francone, C. Allaume, I. Kurt, A. Beaurain, B. Pelissier, B. Pépin-Donat, C. Lombard and J. Boussey , “Double-anchoring fluorinated molecules for anti- adhesion mold treatment in UV nanoimprint lithography”, J. Vac. Sci. Technol. B, 27(6), p. 2873-2876, 2009. 4) A. Francone, C. Iojoiu, C. Poulain, C. Lombard, B. Pépin-Donat, J. Boussey and M. Zelsmann, “Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography”, J. Vac. Sci. Technol. B, 28(6), p. C6M72-C6M76, 2010. 5) N. Kehagias, A. Francone, M. Chouiki, M. Zelsmann, V. Reboud, R. Schoeftner and C. Sotomayor Torres, “Low temperature direct imprint of polyhedral silsequioxane (PSSQ) resist”, to appear in Microelectron Eng. Poster Presentations All the works of research above listed as journal publications were presented as well during international conferences. Those published in Microelectronic Engineering were exposed as poster presentations during the same year edition of Micro and Nano engineering conference; those published in Journal of Vacuum Science & Technology B were exposed as poster presentations during the same year edition of Electron, Ion, Photon Beam Technology and Nanofabrication conference. Another poster was presented, as follows: N. Kehagias, R. A. Farrell, M. Zelsmann, A. Francone, M. Chouiki, V. Reboud, J. D. Holmes, M. A. Morris and C. Sotomayor Torres, “PSSQ templates fabricated by RUVNIL technique for graphoepitaxy”, Nanoprint and Nanoimprint Technology conference, Copenhagen (Denmark), Oct 13-15, 2010. 5 Oral Presentations 1) A. Francone, “Materials and process development of UV-based nanoimprint lithography”, NanoSciences Summer school, Tremblay (France), Jun 23-28, 2008. 2) A. Francone, “Développement de la lithographie par nano-impression assistée par UV (UV-NIL)”, Cluster Microéléctronique, Nanosciences et Nanoélectronique Scientific day, Grenoble (France), Oct 10, 2009. 3) M. Zelsmann, C. Alleaume, D. Boutry, A. Francone, A. Beaurain, B. Pelissier and J. Boussey, “Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatments in UV nanoimprint lithography”, Micro and Nano Engineering conference, Ghent (Belgium), Sept 28-Oct 1, 2009. 6 Table of contents INTRODUCTION ................................................................................................................................................. 9 CHAPTER I. LITHOGRAPHY AND UV-ASSISTED NANOIMPRINT LITHOGRAPHY ................. 11 1 INTRODUCTION ........................................................................................................................................ 11 2 LITHOGRAPHY IN MICROELECTRONICS .................................................................................................... 13 2.1 Optical lithography ....................................................................................................................... 13 2.2 Optical lithography evolution ....................................................................................................... 15 2.3 Future of lithography .................................................................................................................... 18 2.4 Next Generation Lithographies (NGLs) ........................................................................................ 20 2.5 Nanoimprint lithography techniques ............................................................................................. 23 3 UV-ASSISTED NANOIMPRINT LITHOGRAPHY ............................................................................................ 27 3.1 Process details and variants.......................................................................................................... 27 3.2 Resist flow in thin layers ............................................................................................................... 29 3.3 Imprinting examples, resolution and applications ........................................................................ 29 3.4 Imprinting tools ............................................................................................................................. 33 3.5 Industrialization issues .................................................................................................................. 33 4 IMPRINTING MATERIALS FOR UV-NIL ..................................................................................................... 36 4.1 UV-assisted polymerization process ............................................................................................. 36 4.2 UV-curable resists for UV-NIL ..................................................................................................... 41 4.3 Resist shrinkage ............................................................................................................................ 42 4.4 Plasma etching processes and resists stripping ............................................................................ 43 5 MOLD FABRICATION AND ANTISTICKING ISSUES ...................................................................................... 45 5.1 Mold fabrication and characterization ......................................................................................... 45 5.2 Antisticking issues ......................................................................................................................... 46 5.3 Mold treatments ............................................................................................................................ 47 5.4 Fluorinated mold treatment-resist interactions ............................................................................. 49 5.5 Resist-oriented antisticking strategies ........................................................................................... 49 6 CONCLUSION ........................................................................................................................................... 51 CHAPTER II. ANTISTICKING ISSUES IN NANOIMPRINT LITHOGRAPHY .................................. 53 1 ANALYSIS OF FLUORINATED ANTISTICKING LAYERS (F-ASLS) BEFORE IMPRINTING ............................. 53 1.1 F-ASLs deposition procedure ........................................................................................................ 53 1.2 Fluorinated layers characterization techniques ............................................................................ 54 1.3 X-ray Photoelectron Spectroscopy (XPS) details .......................................................................... 55 1.4 Optool DSX characteristics after deposition ................................................................................. 56 2 ANALYSIS OF THE F-ASL DEGRADATION DURING IMPRINTING ................................................................ 58 2.1 Introduction ................................................................................................................................... 58 2.2 F-ASL aging in a standard UV-NIL process ................................................................................. 58 2.3 Direct impact of UV exposure ....................................................................................................... 60 2.4 Impact of the mold nature and history .......................................................................................... 61 2.5 Impact of the resist’s free radicals ................................................................................................ 65 2.6 Impact of the UV intensity and dose .............................................................................................. 67 2.7 Conclusion..................................................................................................................................... 69 3 EVALUATION OF OTHER F-ASLS ............................................................................................................. 70 3.1 Fluorolink® S10: two anchoring end groups ................................................................................ 70 3.2 F -TMS: shorter chain ................................................................................................................. 73 13 3.3 Conclusion..................................................................................................................................... 76 4 IMPACT OF THE UV-CURABLE RESIST ON THE F-ASL DEGRADATION ...................................................... 77 4.1 Comparison of UV-NIL and thermal-NIL ..................................................................................... 77 4.2 Impact of type and number of polymerizable groups .................................................................... 82 4.3 Impact of fluorinated additives in the UV curable resist ............................................................... 92 4.4 Conclusions ................................................................................................................................... 96 5 CONCLUSIONS OF CHAPTER II .................................................................................................................. 97 CHAPTER III. APPLICATION OF UV CURABLE RESISTS IN A REVERSE UV-NIL PROCESS .... 99 1 INTRODUCTION ........................................................................................................................................ 99 2 BLOCK COPOLYMERS FOR NANOPATTERNING ........................................................................................ 100 2.1 Nomenclature .............................................................................................................................. 100 2.2 Microphase separation ................................................................................................................ 100 2.3 How can we align thin film diblock copolymers? ........................................................................ 102 7 Table of contents 2.4 Graphoepitaxy ............................................................................................................................. 103 3 REVERSE UV-NIL EXPERIMENTS .......................................................................................................... 105 3.1 Description of the process used ................................................................................................... 105 3.2 Hybrid mold fabrication .............................................................................................................. 106 3.3 UV-curable functional resist ....................................................................................................... 107 4 FIRST RESULTS....................................................................................................................................... 109 4.1 Graphoepitaxy on SSQ resists ..................................................................................................... 109 4.2 Development of a dedicated solid SSQ resist .............................................................................. 110 5 CONCLUSION ......................................................................................................................................... 111 GENERAL CONCLUSION AND PERSPECTIVES .................................................................................... 113 RESUME EN FRANÇAIS 115 REFERENCES 133 8 Introduction Introduction The nanotechnology revolution has opened up new potential for producing miniaturized devices with reduced cost, less materials and better performance. Miniaturized devices such as microprocessors, micro-optics, biochips, microarrays and microfluidic components consist of micro / nanostructures of functional materials which can be made either using the “bottom up” or the “top down” approach. The bottom up approach fabricates materials and devices at the atomic or molecular scale, possibly using self-assembly methods, while the top down approach etches or mills smaller structures from larger ones. Currently, fabrication processes of most micro / nanostructures for micro / nanodevices are based on the established semiconductor industry manufacturing technology, which leads to the creation of electronic products widespread in modern times. Few examples are personal computers, mobile phones, televisions, DVD players and digital cameras. Although their different function, all of them are made with integrated circuits (ICs). The fundamental building block of these modern electronic devices is the transistor. First ICs became commercially available in 1961 and at that time they hosted only one transistor; in 2010, Intel commercialized the Xenon 7500 processor series containing 2.3 billion of transistors. The key element responsible of this important progress is lithography, i.e. the technique used in the semiconductor industry to define the transistors. The process of miniaturization is still undergoing and standard projection optical lithography, used today in industry, will reach a resolution limit. This is why there is a need to develop Next Generation Lithographies (NGLs) able to propose an increased resolution at a reasonable cost. One of these NGLs is Nanoimprint lithography (NIL). It consists in the replication of a mold shape by pressing it into a thin layer of soft imaging material. Two main variants of nanoimprint lithography exist: thermal NIL and UV-assisted NIL (UV-NIL), demanding a thermoplastic (or thermo-curable) and a UV-curable resist respectively as soft imaging layer. UV-NIL is the most promising approach due to a lower process time and better alignment capabilities. However, number of issues has to be solved to bring this technology to an industrial maturity. Among these we have: the imaging material (resist) availability, the high resolution fused silica mold availability, the proper understanding of the resist flow during the process and all sticking-related problems that appear at the contact between the resist and the mold. The Laboratoire des Technologies de la Microélectronique, in Grenoble, France, is a CNRS laboratory hosted in the CEA-LETI-Minatec center, one of the most attractive sites for applied research in Europe. During my three years PhD work in this lab, I tried to address the specific issues cited above, with a special emphasis on the antisticking issues, which is, I believe, the most critical aspect in this technology. Also, during the end of my second year, I stayed 6 months in the Catalan Institute of Nanotechnology in Barcelona, Spain, in the group of Prof. C. M. Sotomayor Torres, where I worked on the application of UV-NIL resists dedicated to the fabrication of templates for long-range ordering of di-block copolymers. Moreover, I had the possibility to collaborate and perform experiments in Finland, at the VTT - Technical Research Centre in Espoo. This manuscript is divided into three chapters as follows: • Chapter I presents the general context of lithography in microelectronics and the reason why it is needed to develop alternative lithography techniques. Process details and specific issues of UV nanoimprint lithography are given, along with a state-of-the-art on UV-NIL resists. 9
Description: