Material Interactions in a Novel Refill Friction Stir Spot Welding Approach to Joining Al-Al and Al-Mg Automotive Sheets A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Sciences and Engineering 2016 BY Basem Mohysen Mohammed Al-Zubaidy SCHOOL OF MATERIALS Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets 2 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets Contents Contents ............................................................................................................................ 3 List of Tables..................................................................................................................... 7 List of Figures ................................................................................................................... 8 List of Abbreviations....................................................................................................... 15 Abstract ........................................................................................................................... 16 Associated Publications .................................................................................................. 17 Declaration ...................................................................................................................... 18 Copyright ........................................................................................................................ 19 Acknowledgements ......................................................................................................... 20 Chapter 1: Introduction ................................................................................................... 23 1.1 The Effects of Automobiles on Global Warming (Greenhouse Gas Emissions) .. 23 1.2 Lightweight Materials in Automobile Body Applications .................................... 25 Influence on Emissions .................................................................................. 25 Multi-Material Automotive Structures ........................................................... 30 1.3 Objectives of this Study ........................................................................................ 35 1.4 Thesis Overview.................................................................................................... 36 Chapter 2: Literature Review .......................................................................................... 37 2.1 Introduction ........................................................................................................... 37 2.2 Joining Overview .................................................................................................. 37 2.3 Fusion Spot Welding ............................................................................................. 39 Resistance Spot Welding (RSW) ................................................................... 39 Laser Welding ................................................................................................ 42 2.4 Mechanical Fastening............................................................................................ 45 Self-Piercing Riveting .................................................................................... 45 Clinching ........................................................................................................ 46 2.5 Solid State Spot Welding ...................................................................................... 47 Ultrasonic welding (USW) ............................................................................. 47 2.6 Friction Stir Spot Welding (FSSW) Techniques. .................................................. 50 Background: Friction Stir Welding (FSW) .................................................... 50 Friction Stir Spot Welding (FSSW) ............................................................... 54 Refill Friction Stir Spot Welding (RFSSW) .................................................. 58 2.7 Heat Generation in FSSW and RFSSW ................................................................ 61 2.8 Effects of Welding Parameters on the RFSSW process........................................ 68 2.9 Material Flow in FSSW and RFSSW ................................................................... 72 3 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets 2.10 Microstructure Formation and Weld Defects in Al-Al Similar Friction Stir Spot Welds .......................................................................................................................... 78 Microstructure Formation in Al-Al Similar Welds ...................................... 78 Weld Defects in Al-Al Similar Welds ......................................................... 80 2.11 Microstructure Formation of Dissimilar Al-Mg Spot Welds .............................. 83 2.12 Al Alloys ............................................................................................................. 86 Overview and Classification of Al Alloys ................................................... 86 Precipitation Hardening of Al Alloys .......................................................... 90 Aluminium Alloy AA6111 ......................................................................... 94 The Microstructures of AA6111 FSSWs ..................................................... 97 2.13 Magnesium Alloys .............................................................................................. 99 Overview and Classification of Mg Alloys.................................................. 99 Magnesium Alloy AZ31 ............................................................................ 103 2.14 Aluminium and Magnesium Intermetallic Compounds .................................... 106 Al-Mg Binary Phase Diagram .................................................................... 106 Gamma Phase ............................................................................................. 107 Beta Phase .................................................................................................. 108 Other Phases ............................................................................................... 109 2.15 FE Modelling of the Mechanical Behaviour of RFSSW Joints ........................ 110 Chapter 3: Experimental Methods ................................................................................ 115 3.1 Introduction ......................................................................................................... 115 3.2 Materials.............................................................................................................. 115 Surface Preparation for Welding .................................................................. 116 3.3 Welding Method: Refill Friction Stir Spot Welding (RFSSW) and Modified FSSW ........................................................................................................................ 116 3.4 Heat Treatments .................................................................................................. 121 3.5 Thermal Measurements ....................................................................................... 121 3.6 Hardness Test ...................................................................................................... 123 3.7 Mechanical Testing ............................................................................................. 124 3.8 Metallographic Examination ............................................................................... 125 Sample Preparation ...................................................................................... 125 Optical Microscopy ...................................................................................... 126 Scanning Electron Microscopy (SEM) ........................................................ 126 Energy Dispersive X-ray (EDX) .................................................................. 128 Electron Backscatter Diffraction (EBSD) .................................................... 128 Focused Ion Beam (FIB) Milling ................................................................. 129 Transmission Electron Microscopy (TEM) ................................................. 130 4 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets 3.9 Material Flow during RFSSW ............................................................................ 131 Sample Preparation for Dissimilar Aluminium Alloy Flow Experiments ... 131 Sample Preparation for X-Ray Tomography ............................................... 132 Description of the X-Ray Computational Tomography Technique (XCT) . 133 3.10 FE Modelling of the Lap Tensile-Shear Test of RFSSW Joints ....................... 135 Chapter 4: Refill Friction Stir Welding of Al-Al Similar Welding (Results and Discussion) .................................................................................................................... 137 4.1 Introduction ......................................................................................................... 137 4.2 Welding Optimisation ......................................................................................... 137 4.3 Effect of the Process Parameters on Material Flow in Refill Friction Stir Spot Welding and Weld Defects ....................................................................................... 139 4.4 Effect of Welding Variables on the Weld Thermal Field and Thermal History . 158 4.5 Weld Microstructure ........................................................................................... 163 4.6 Effect of Welding Variables on Joint Hardness Profiles in the as-Welded, Naturally Aged, and Artificially Aged Conditions ................................................... 168 4.7 Effect of Welding Variables on Weld Strength .................................................. 176 4.8 Effect of Natural and Artificial Ageing on Weld Strength ................................. 182 4.9 Weld Fracture Surfaces and Cross-Sections in the As-Welded, Naturally Aged, and Artificially Aged Conditions .............................................................................. 187 4.10 Summary and Conclusions ................................................................................ 190 Chapter 5: Refill Friction Stir Welding of Mg-Al Dissimilar and Mg-Mg Similar Welding (Results and Discussion) ............................................................................... 193 5.1 Introduction ......................................................................................................... 193 5.2 Welding Optimisation and RFSSW Modification .............................................. 194 5.3 Effect of Welding Variables on the Weld Thermal Field and Thermal History of Mg-Al Dissimilar Joints ............................................................................................ 196 5.4 Effect of Welding Variables on Joint Hardness Profile of the Mg-Al Dissimilar Weld in the As-Welded Condition ............................................................................ 201 5.5 Effect of Welding Variables on the Interface Microstructure of the Mg-Al Dissimilar Welds ....................................................................................................... 203 5.6 Effect of Welding Variables on the Weld Strength of Mg-Al RFSSWs and Modified RFSSWs .................................................................................................... 212 5.7 Comparison of the Effect of the Tool Rotation Rate on the Strength of Mg-Al and Mg-Mg Modified RFSSWs ....................................................................................... 220 5.8 Weld Failure Modes ............................................................................................ 222 5.9 Summary and Conclusions .................................................................................. 225 Chapter 6: FE Modelling of the Mechanical Behaviour of Refill Friction Stir Spot Welds (Al-Al and Mg-Al) ............................................................................................. 229 6.1 Introduction ......................................................................................................... 229 5 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets Model Characteristics ..................................................................................... 229 Geometry and Dimensions of the Similar Al-Al Lap-Shear Specimen and Weld Regions (SZ, HAZ, BM) ............................................................................. 230 Geometry and Dimensions of Dissimilar Mg-Al Lap-Shear Specimen and Weld Regions (SZ, HAZ, BM) ............................................................................. 233 Material Properties ......................................................................................... 235 Al-Al welds ............................................................................................. 235 Mg-Al welds ........................................................................................... 242 Boundary Loading Conditions in the Model .................................................. 244 Mesh building ................................................................................................. 245 Results and Discussion ................................................................................... 249 As-welded similar Al joints .................................................................... 249 Artificially-aged Similar Joints ............................................................... 258 Mg-Al Dissimilar Welds ......................................................................... 264 Summary and Conclusions ............................................................................. 270 Chapter 7: Conclusions and Recommendations for Further Work ............................... 273 7.1 General Conclusion ............................................................................................. 273 Al to Al similar welds .................................................................................. 273 Mg to Al dissimilar welds ............................................................................ 276 FE Model of the Similar and Dissimilar Joints ............................................ 277 7.2 Recommendations for Further Work .................................................................. 279 Chapter 8: References ................................................................................................... 281 (79,971 words) 6 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets List of Tables Table 1-1: Vehicle mass analysis by system and components ........................................ 27 Table 2-1: Properties of pure aluminium, magnesium and iron at their melting points . 41 Table 2-2: Aluminium Alloy Designation Systems ........................................................ 88 Table 2-3: Aluminium Association and European Union (EN) Aluminium Alloy Temper Designation System ........................................................................................... 88 Table 2-4: Some of the common aluminium precipitation hardening systems ............... 93 Table 2-5: Composition of some of the 6xxx series aluminium alloys used for automotive panel applications ......................................................................................... 95 Table 2-6: Literal symbols for alloying elements in magnesium alloys ....................... 102 Table 2-7: General divisions of the temper designations for magnesium alloys .......... 103 Table 2-8: Composition of magnesium wrought alloys used for sheets and plates ...... 104 Table 2-9: Mechanical properties of an AZ31 sheet at room temperature ................... 104 Table 3-1: Chemical compositions of the alloys used in this study. ............................. 116 Table 3-2: Range of welding parameters used in this study. ........................................ 119 Table 4-1: The range of welding parameters used in RFSSW of AA6111 similar joints. ....................................................................................................................................... 139 Table 5-5-1: The range of welding parameters used in the RFSSW and modified RFSSW process for welding AZ31 to AA6111 dissimilar joints. ................................ 196 Table 6-1: True stress-strain data used for modelling the RFSSW joint in the as-welded condition. ....................................................................................................................... 239 Table 6-2: True stress-strain data used for modelling the RFSSW joint in the paint- baked condition. ............................................................................................................ 242 Table 6-3: True stress-strain data used for modelling the AZ31-H24 magnesium alloy in the dissimilar RFSSW joint of Mg-Al. ......................................................................... 243 7 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets List of Figures Figure 1-1: Greenhouse gases emitted by transportation ................................................ 24 Figure 1-2: Grams of CO emitted by transportation according to the region and 2 projected future targets .................................................................................................... 25 Figure 1-3: Typical energy consumption during the life cycle of a vehicle .................. 26 Figure 1-4: Mercedes-Benz AMG SL63 aluminium body structure .............................. 29 Figure 1-5: Vehma/Ford MMLV a) Mach I BIW b) Mach II BIW ................................ 31 Figure 1-6: Schematic illustration of the RFSSW processes .......................................... 34 Figure 2-1: Classes of methods used to join similar and dissimilar materials ................ 38 Figure 2-2: Schematic illustration of the resistance spot welding (RSW) process ......... 39 Figure 2-3: Schematic illustration of laser welding ........................................................ 43 Figure 2-4: Laser weld bonding process ......................................................................... 45 Figure 2-5: a) Schematic illustration of the self-piercing riveting process; b) Cross- section of two sheets joined by a self-piercing rivet ....................................................... 46 Figure 2-6: Schematic illustration of the clinching process ........................................... 46 Figure 2-7: Schematic illustration of the ultrasonic welding (USW) process ................ 48 Figure 2-8: The effect of welding time on the cross-sectional appearance of USWs of Al-Al ............................................................................................................................... 49 Figure 2-9: Schematic diagram of the friction stir welding (FSW) process ................... 50 Figure 2-10: Friction stir welding tool ............................................................................ 51 Figure 2-11: Some selected tools designed at TWI ........................................................ 52 Figure 2-12: Schematic illustration of the friction stir spot welding (FSSW) process ... 55 Figure 2-13: The typical macrostructure of a cross-section of a friction stir spot weld. 56 Figure 2-14: Failure loads of AA6111-T4 sheets joined using FSSW ........................... 57 Figure 2-15: Schematic illustration of the friction stir spot welding refilling process ... 57 Figure 2-16: Schematic illustration of the RFSSW tool system ..................................... 59 Figure 2-17: Schematic illustration of the two RFSSW process variants ....................... 60 Figure 2-18: Constitutive behaviour of an AA6056 during FSW ................................... 62 Figure 2-19: Temperature cycle during the complete welding process (a) in different distances from the SZ and (b) at a distance of 2.66 mm (Shen, et al., 2015). ................ 64 Figure 2-20: (a) Results of the simulated temperature distribution in the RFSSW process for a half weld at the welding time of 3 s and (b) thermal cycles in different tracked positions .......................................................................................................................... 65 Figure 2-21: Results of the simulated strain rate distribution in an RFSSW process for a welding time of 3 s .......................................................................................................... 66 Figure 2-22: A schematic illustration of the RFSSW process with the placement of the thermocouples during the temperature measurements .................................................... 67 Figure 2-23: The temperature profile during RFSSW of an Al-Mg dissimilar joint ...... 67 Figure 2-24: The effect of key welding parameters on the tensile shear strength of RFSSW joints .................................................................................................................. 69 Figure 2-25: The effect of plunge depth and welding time on the lap shear strength of RFSSW joints .................................................................................................................. 70 Figure 2-26: Effect of the RFSSW process parameters on the lap shear strength of AA5754 to AZ31 joints................................................................................................... 71 Figure 2-27: Interlamellar regions produced during dissimilar Al 5754-Al 6111 FSSW using a threaded pin tool ................................................................................................. 73 Figure 2-28: Schematic illustration of a material flow model during FSSW ................. 73 8 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets Figure 2-29: Material flow observed with a pinless tool from welds produced with the upper and lower sheets split though the weld centre into dissimilar copper content alloys ......................................................................................................................................... 75 Figure 2-30: X-ray tomography results showing the dished nature developed by the weld interface for welds produced with the pinless tool ................................................. 75 Figure 2-31: Cross-sectional views of a kinematic model after different numbers of tool rotations, for three surface stick-slip conditions ............................................................. 76 Figure 2-32: Simulation results of material flow during RFSSW................................... 77 Figure 2-33: Material flow in RFSSW during sleeve-plunging ...................................... 78 Figure 2-34: Optical micrograph of the cross-section of an RFSSW joint, of AA6181-T4 ......................................................................................................................................... 79 Figure 2-35: Microhardness profile measured in the middle of the upper sheet at the cross-section of an RFSSW joint of AA6181-T4 ........................................................... 80 Figure 2-36: Macrographs of RFSSW joint cross-section showing detrimental weld zone, geometric/metallurgical features and weld defects ............................................... 80 Figure 2-37: Different types of hook defect in RFSSW welds ....................................... 81 Figure 2-38: The effect of welding parameters on the hook height ................................ 82 Figure 2-39: Cross-section of an Al5754-AZ31 RFSSW joint: (a) as-welded sample, (b) micrographs of the eutectic structure in the IMC layer................................................... 84 Figure 2-40: (a) Macrograph of an RFSSW joint between AA5754 Al and AZ31 Mg, (b) enlarged microstructures from region 2, and (c) the chemical composition distribution across the interface ...................................................................................... 84 Figure 2-41: Cross-section of an Al5754-AZ31 RFSSW joint ....................................... 85 Figure 2-42: Typical SEM images of (a) the interfacial layers in low- and high- rotational-rate welds; (b) the corresponding interfacial layer in the fractured welds ..... 85 Figure 2-43: The increase in aluminium content in North American small vehicles over the last three decades ....................................................................................................... 87 Figure 2-44: Typical aluminium alloy applications in an automobile ............................ 90 Figure 2-45: (a) The Al-rich side of an Al-Cu binary diagram showing GP zone, θ and θ solvus lines (dotted lines), (b) θ unit cell, (c) GP zone, (d) θ unit cell and (e) θ unit cell ................................................................................................................................... 91 Figure 2-46: Activation energy barriers to the nucleation of precipitate phases in Al-Cu binary alloys .................................................................................................................... 93 Figure 2-47: The effect of copper percentage and ageing time on the hardness of Al-Cu binary alloys on ageing at (a) 130C and (b) 190C ....................................................... 94 Figure 2-48: The pseudo-binary Al-Mg2Si system ......................................................... 96 Figure 2-49: SEM images showing coarse precipitates of the second phase present in weld zones of the AA6111 FSSW joints ........................................................................ 98 Figure 2-50: TEM micrographs for: the AA6111 parent material (a) in the T4 condition and (b) after the paint-bake treatment, and from the pinless FSSW joint centre of a 0.5 second dwell-time weld (c) in the as-welded condition, and (d) after the paint-bake treatment .......................................................................................................................... 99 Figure 2-51: Comparison of the specific stiffness and specific strength of pure Mg with Al and iron ................................................................................................................... 100 Figure 2-52: Magnesium production data in the period 1938–2008. ............................ 100 Figure 2-53: Timeline summarising magnesium automotive applications ................... 101 Figure 2-54: Schematic of magnesium’s hexagonal close-packed (HCP) crystal lattice and major planes ........................................................................................................... 102 9 Material interactions in a novel refill friction stir spot welding approach to joining Al-Al and Al-Mg automotive sheets Figure 2-55: Typical microstructures for an AZ31 sheet .............................................. 104 Figure 2-56: The effects of Al and Zn additions on the mechanical properties of Mg in annealed and hard rolled conditions.............................................................................. 105 Figure 2-57: Al-Mg equilibrium phase diagrams ......................................................... 106 Figure 2-58: The Al-Mg binary phase diagram drawn by Okamoto using calculated data from Murray and experimental results from Su et al .................................................... 107 Figure 2-59: Crystal structure of the gamma phase (Al12Mg17) .................................... 108 Figure 2-60: Complete unit cell of β-Al3Mg2 phase ..................................................... 109 Figure 2-61: The middle section of the Mg-Al phase diagram proposed by Su et al ... 109 Figure 2-62: ε-Al30Mg23 phase crystal structure ........................................................... 110 Figure 2-63: The geometric features of the welded joint. ............................................. 111 Figure 2-64: The engineering stress-strain curves assumed for the BM, SZ, and TMAZ ....................................................................................................................................... 113 Figure 2-65: Stress distribution in the RFSSW joint under loading ............................. 113 Figure 2-66: Finite-element model of a FSSW joint with 5 different material property regions ........................................................................................................................... 114 Figure 3-1: The refill friction stir spot welding machine. ............................................. 117 Figure 3-2: Typical monitoring chart for the RFSSW process. .................................... 117 Figure 3-3: Welding head for the RFSSW process. ...................................................... 118 Figure 3-4: The RFSSW tool parts. .............................................................................. 118 Figure 3-5: The RFSSW machine variable control table. ............................................. 119 Figure 3-6: Schematic illustration of the modified RFSSW process ............................ 120 Figure 3-7: Schematic illustration of the different thermocouple locations for AA6111 similar welding. ............................................................................................................. 122 Figure 3-8: Schematic illustration of the thermocouple location for the dissimilar AZ31- H24 to AA6111-T4 welding. ........................................................................................ 122 Figure 3-9: Schematic illustration of the locations of the microhardness measurements ....................................................................................................................................... 123 Figure 3-10: Schematic of the Vickers Microhardness indentation test. ...................... 124 Figure 3-11: Schematic illustration of lap-shear test specimens ................................... 125 Figure 3-12: Effects produced by the electron beam–specimen interaction ................. 127 Figure 3-13: Schematic diagram illustrating the FIB procedure of TEM sample preparation .................................................................................................................... 130 Figure 3-14: Schematic diagram illustrating the TEM optical system ......................... 131 Figure 3-15: Schematic illustration of one of the material flow sample alignments .... 132 Figure 3-16: Schematic illustration of the alignment for the X-ray Tomography sample ....................................................................................................................................... 133 Figure 3-17: (a) Principle of X-ray tomography; (b) synchrotron and laboratory tomography ................................................................................................................... 134 Figure 4-1: The effect of plunge time and tool rotation rate on the weld surface appearance and the completeness of the refilling process. ........................................... 139 Figure 4-2: The output of the kinematic model, showing the surface velocity profile by assuming complete sticking .......................................................................................... 141 Figure 4-3: Effect of weld plunge depth and process interruption on the material flow ....................................................................................................................................... 143 Figure 4-4: Effect of sleeve plunge depth and process interruption on material flow in the lower sheet .............................................................................................................. 144 10
Description: