ebook img

Matematick´e modelov´anı vazk´eho nestlaˇciteln´eho proudˇenı profilovou mˇrıˇzı PDF

103 Pages·2007·0.61 MB·Slovak
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Matematick´e modelov´anı vazk´eho nestlaˇciteln´eho proudˇenı profilovou mˇrıˇzı

UNIVERZITA KARLOVA V PRAZE ´ ´ MATEMATICKO–FYZIKALNI FAKULTA Katedra numericke´ matematiky Matematicke´ modelova´n´ı vazke´ho nestlacˇitelne´ho proudeˇn´ı profilovou mrˇ´ızˇ´ı ˇ ´ ´ DISERTACNI PRACE ˇ CERVEN 2007 RNDr. Toma´sˇ Neustupa CHARLES UNIVERSITY, PRAGUE FACULTY OF MATHEMATICS AND PHYSICS Department of Numerical Mathematics Mathematical Modelling of Viscous Incompressible Flow through a Cascade of Profiles DISERTATION THESIS JUNE 2007 RNDr. Toma´sˇ Neustupa Acknowledgement I would like to express my gratitude to my supervisor Prof. RNDr. Miloslav Feistauer, DrSc.,Dr.H.C.forintroducingmetothefieldofincompressibleflowsthroughcascadesof profiles, for encouragement, numerous discussions and hints and for his effort in guiding andsupportingmystudies. Thedissertationwouldnothavebeenpossiblewithouthishelp. I am grateful to the Faculty of Mathematics and Physics at the Charles University for giving me the opportunity to spend and perform my doctoral studies at the Department of NumericalMathematicsinapleasantandstimulatingenvironment. I also thank Prof. RNDr. Karel Kozel, DrSc. for including me into the team of re- searchers who work on the Research Plan of the Ministry of Education of the Czech Re- public No. MSM 6840770010 at the Czech Technical University, Faculty of Mechanical Engineering, Department of Technical Mathematics. It enables me to live and work in a scientificcommunityandtocontinueinmyresearchafterfinishingmydoctoralstudies. Andfinally,IwishtothankthechairoftheDepartmentofTechnicalMathematicsatthe Czech Technical University, Faculty of Mechanical Engineering, Prof. Ing. Jaroslav Fort, CSc. for supporting research generally and for creating very good working conditions at thedepartmentinthelastyearswhenIamemployedthere. 1 Contents Introduction ................................................................... 3 Geometryoftheproblem ....................................................... 6 I. Stationaryproblemwithanonlinearmixedboundaryconditionon theoutflow 1. Classicalformulation ................................................... 9 2. Weakformulation ..................................................... 13 3. Existenceofaweaksolution ........................................... 30 4. Uniquenessoftheweaksolution ....................................... 41 II. Stationaryproblemwithmodifiedboundaryconditionsontheoutflow 1. Theproblemwithalinearmixedboundaryconditioninvolving Bernoulli’spressureontheoutflow ..................................... 45 2. Theproblemwithlinearseparatedboundaryconditionsforvorticity andBernoulli’spressureontheoutflow ................................. 51 3. Theproblemwithamodifiednonlinearboundaryconditiononthe outflowandalargeinflow ............................................. 54 III. Nonstationaryproblemwithanonlinearmixedboundaryconditionon theoutflow 1. Classicalformulation .................................................. 68 2. Weakformulation ..................................................... 70 3. Existenceofaweaksolution ........................................... 74 Appendix: Someimportantinequalities ....................................... 91 Listofsymbols ............................................................... 96 References ................................................................... 98 2 Introduction Oneofthemostimportantsubjectsinthetheoryofblademachines(i.e. turbines,com- pressors, pumps etc.) is the study of flows through blade rows. These flows are rather complex. In general, they are three-dimensional, nonstationary, rotational, turbulent and thedomainoccupiedbythefluidhasacomplicatedgeometry. Thisisthereasonthatthere is a number of various models used for the analysis of the flow though blade rows. Sim- ple one–dimensionalmodels whichgive only avery roughimage of thebehaviour of fluid flowinbladerowsarenowemployedrarely. Ontheotherhand,three–dimensionalmodels are so complex that their usage in numerical calculations requires rather long CPU time even on most modern computers. This is why two–dimensional models are still exten- sively used. We can mention, e.g. the widely used model of plane flow through a cascade of profiles. (For its derivation, see e.g. [8] or [7], Section 3.4.) It has numerous variants taking into account various features, as incompressibility or compressibility of the fluid and variable geometry of casing walls of the through flow part of blade machines lead- ing to the model of flow in a layer of variable thickness. (See, e.g. [2], [8], [29], [33], [44], [52], [56], [57]). The model of plane irrotational incompressible inviscid flow, nu- merically realized by Martensen’s method, was applied in engineering practice for several decades. E.Martensentransformedtheproblemtoaboundaryintegralequationonasingle profile of a cascade in his papers [45], [46] and [47]. Using the Fredholm alternative, he proved the existence and uniqueness of the solution. Martensen’s integral equation was later discretized and became the basis for an efficient and accurate numerical method for thesolutionofflowsthroughcascadesofprofiles;see([31],[51]). The method of E. Martensen can be considered to be the first mathematically founded technique for the simulation of cascade flow problems. The development of modern com- putersinthelastyearsenablesustoconsidersuccessivelymoreandmorecomplexmodels, involving compressibility, viscosity, heat conduction and various other phenomena. A se- ries of approaches to numerical simulation of cascade flow problems is described in ([3], [4], [5], [6], [9], [10], [11], [12], [13], [14], [15], [17], [18], [19], [24], [26], [27], [28]). However,arigorousmathematicaltheoryisinmostoftheusedmodelsmissing. Motivated by this state, the present thesis deals with the theoretical analysis of an in- compressible viscous flow through a plane cascade of profiles. Our model is based on the Navier–Stokes equation (conservation of momentum) and the equation of continuity (con- servationofmass). Inthefirstthreechapters,westudythestationaryproblemwithsuitable boundary conditions. The conditions involve the non–homogeneous Dirichlet boundary condition on the inflow, the no–slip boundary condition on the profiles and the condition of periodicity in one space direction (along the cascade of profiles). The spatially peri- odic character of the flows enables us to restrict ourselves to a boundary–value problem formulatedjustononespaceperiod. The mostly discussed condition is the boundary condition on the outflow. We use a modified “do nothing condition” analogous to the condition used by J. Heywood, R. Ran- nacherandS.Turek[25]inChapterI.Thename“donothing”comesfromthefactthatthe condition does not explicitly appear in the weak formulation of the problem and it follows from this formulation if an existing solution is in some sense “smooth”. If the convective nonlineartermintheNavier–Stokesequationiswritteninthe“traditional”wayas(u·∇)u, 3 where u is the velocity, then the natural weak formulation (used in [25] and similar to the weakformulationoftheboundaryvalueproblemwiththeDirichletboundaryconditionon the whole boundary explained e.g. by R. Temam in [55]) does not exclude eventual back- wardflowsontheoutputthatcanbringbacktotheconsideredflowfieldanuncontrollable amount of kinetic energy and consequently, the energy estimate breaks down. The same difficultywasalreadyobservedinstudiesofaflowinachannelbymanyauthors. Inorder to preserve an energy estimate, S. Kracˇmar and J. Neustupa in [34] and [37] prescribed an additional boundary condition which restricted the kinetic energy brought back on the outflow and they have therefore described and solved the problem by means of a varia- tional inequality of the Navier–Stokes type. P. Kucˇera and Z. Skala´k solved the problem for “small” data, see [39], [38]. In Chapter I of this thesis, we use a certain nonlinear modification of the boundary condition on the outflow from [25]. The modification was proposed by C. H. Bruneau, F. Fabrie in [1]. It enables us to derive necessary energy es- timates and to prove the existence (for a sufficiently small inflow) and uniqueness (for all datasufficientlysmall). In the first two sections of Chapter II, we use the Navier–Stokes equation with the non- lineartermintheformcurlu×u(whosetwo–dimensionalanalogisω(u)u⊥ –seeSec- tion II.1). This is compensated by the presence of pressure in Bernoulli’s dynamic form p+1|u|2 (whichwecalltheBernoullipressure). Sinceω(u)u⊥ ispoint–wiseperpendicu- 2 lartou,weareabletoderive,fromacorrespondingweakformulation,anenergyestimate regardless the backward flows on the outflow. Thus, the “do nothing” boundary condition on the outflow, following from the weak formulation, need not be modified in the sense of C.H.Bruneau,F.Fabrieandcanhaveformallythesameformasin[25],howeverwiththe Bernoulli pressure q = p + 1|u|2 instead of the “static” pressure p. The energy estimate 2 further enables us to prove the existence and a uniqueness of the weak solution. We also need the velocity on the inflow to be “small enough” in the proof of existence and all data tobe“smallenough”inthetheoremonuniqueness. Therequirementonthesmallnessofthedatainthetheoremsonuniquenesshasthesame reason as the similar condition in known theorems on uniqueness of stationary solutions of boundary–value problems for the Navier–Stokes equation with the Dirichlet boundary condition on the whole boundary of the flow field. As examples of non–uniqueness are known in the case of the Dirichlet boundary condition on the whole boundary and large data, it is logical to expect that the non–uniqueness can also take place in the case of our boundaryvalueproblem,ifthegivendataarelarge. The condition on smallness of the inflow velocity has the same background as the con- ditiononsmallnessoffluxesbetweenvariouscomponentsoftheboundaryinknowntheo- remsonexistenceofaweaksolutionoftheboundary–valueproblemfortheNavier–Stokes equation with the Dirichlet boundary condition, see e.g. G. P. Galdi [21] or V. Girault and P.-A. Raviart [23]. The case of a large inflow is solved in Section II.3, however the pos- sibility of the large inflow is again compensated by certain modification of the boundary conditionontheoutflow. ChapterIIIdealswiththenonstationarycaseoftheboundaryvalueproblemfromChap- ter I. We present a weak formulation and we prove the existence of a weak solution. Our result extends known theorems on the existence of a weak solution of the Navier– Stokes initial–boundary value problem, proved originally by J. Leray [42] and E. Hopf 4 [30], and explained in a series of books on the theory of the Navier–Stokes equations, see e.g. O. A. Ladyzhenskaya [41], V. Girault and P.-A. Raviart [23], R. Temam [55] and M. Feistauer [7]. The proof is carried out by the Rothe method, which was for the first timeappliedtotheNavier–StokesequationsbyM.Shinbrotin[54]. Duetothepossibility of deriving a necessary energy estimate by means of the Gronwall lemma, we do not need the velocity on the inflow to be “small” in Chapter III. On the other hand, the obtained regularity of the weak solution does not enable us to prove its uniqueness even if all the data are “small”. It can be expected that, in the case of “small” and regular data (inflow, specific body force, outflow), the existing weak solution is regular and therefore unique, as it is known from the case of the Dirichlet boundary condition on the whole boundary. However,wehavenotstudiedthisquestioninthethesis. 5 Geometry of the problem (cid:113) (cid:113) (cid:113) (cid:113) etc. (cid:113) (cid:113) (cid:54) x 2 D Γ2 : x = γ(x ) + 2τ 2 1 Ω 2 (cid:24)(cid:24)(cid:24)(cid:58) A2 C (cid:81) 1 (cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:58)(cid:24)(cid:58) (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0) B (cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:115)(cid:81)(cid:115) (cid:24)(cid:24)(cid:24)(cid:58) 2 (cid:81)(cid:81)(cid:81)(cid:115) (cid:81) (cid:24)(cid:24)(cid:24)(cid:58) Γ1 : x2 = γ(x1) + τ (cid:81)(cid:81)(cid:81)(cid:81)(cid:115) (cid:24)(cid:24)(cid:24)(cid:58) A (cid:54) Ω1 (cid:81)(cid:81)(cid:81)(cid:81)(cid:115) (cid:24)(cid:24)(cid:24)(cid:58) 1 τ C0 (cid:81)(cid:81)(cid:81)(cid:81)(cid:115) (cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:58)(cid:24)(cid:58) (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0) B1 (cid:81)x(cid:81)(cid:81)1(cid:81)(cid:81)(cid:81)(cid:115)(cid:81)(cid:115)(cid:45) (cid:81) (cid:24)(cid:24)(cid:24)(cid:58) Γ0 : x2 = γ(x1) (cid:81)(cid:81)(cid:81)(cid:115) (cid:81) (cid:24)(cid:24)(cid:24)(cid:58) A (cid:63) Ω0 (cid:81)(cid:81)(cid:81)(cid:81)(cid:115) (cid:24)(cid:24)(cid:24)(cid:58) 0 C−1 (cid:81)(cid:81)(cid:81)(cid:115) (cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:58)(cid:24)(cid:58)(cid:24)(cid:58) (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0) Ω−1 B0 (cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:115)(cid:81)(cid:115) (cid:81) (cid:24)(cid:24)(cid:24)(cid:58) (cid:81)(cid:81)(cid:81)(cid:115) G G (cid:81) i o (cid:81) (cid:81)(cid:81)(cid:115) (cid:113) (cid:113) (cid:113) etc. x = d (cid:113) x = d 1 i (cid:113) 1 o (cid:113) Fig.1 LetussupposethatC isasimpleclosedcurveinR2 whichispiecewiseoftheclassC2 0 and whose interior and exterior are domains with a Lipschitz–continuous boundary. For k ∈ Zweput C = {(x ,x +kτ); (x ,x ) ∈ C }, k 1 2 1 2 0 6 whereτ isapositiveconstant. Weassumethatτ issolargethatthecurvesC aremutually k disjoint. ByIntC wedenotetheinteriorofthecurveC . Theset k k +∞ M = IntC (cid:91) k k=−∞ iscalledacascadeofprofilesandeachofitscomponentsIntC iscalledaprofile. Number k τ iscalledtheperiodofthecascade. Let d and d be two real numbers which are chosen so that d < d and all the profiles i o i o are lying inside the strip {[x ,x ] ∈ R2; d < x < d }. We shall study the motion of a 1 2 i 1 o viscousincompressiblefluidintheunboundeddomain D = {[x ,x ] ∈ R2; d < x < d } \ M. 1 2 i 1 o We suppose that the fluid enters the domain D through the straight line G , given by the i equation x = d , and it leaves the domain D through the straight line G , given by the 1 i o equation x = d . Now it is logical to call the straight line G the inlet (or the inflow) 1 o i and the straight line G the outlet (or the outflow). In accordance with the notation G and o i G , we further denote by G the union of all the curves C : G = ∪+∞ C . The set o w k w k=−∞ k G represents an infinite family of fixed walls inside the flow field; this is why we use the w subscriptw. Let us assume the existence of a function x = γ(x ), defined in the interval [d ,d ], 2 1 i o which belongs to C1([d ,d ]) and whose graph separates the profiles IntC and IntC . i o 0 −1 It means that the curve C is lying above the graph of the function γ and the curve C 0 −1 is lying below the graph of γ. (See Fig. 1.) We denote by A = (d ,γ(d )) and B = 0 i i 0 (d ,γ(d ))theendpointsofthegraphofγ. o o Let us denote by Γk (for k ∈ Z) the curve which is identical with the graph of the functionx = γ(x )+kτ ford ≤ x ≤ d . 2 1 i 1 o Noweachofthesecurvesseparatestheprofiles IntC and IntC . WedenotebyA , k−1 k k respectively B the end points of the curve Γk. It means that A = (d ,γ(d ) + kτ) and k k i i B = (d ,γ(d )+kτ). k o o LetusdenotebyΩ (fork ∈ Z)asubdomainofD,whoseboundaryconsistsoftheline k segmentsA A ,B B andthecurvesΓk,Γk+1 andC . k k+1 k k+1 k Our goal is to study flow in the whole domain D. This domain is unbounded, however its shape repeats periodically with the period τ in the x –direction. Thus, it is reasonable 2 to deal with flow which is τ–periodic in the x –direction. This assumption enables us to 2 restrict our considerations the flow in one spatial period of the domain D only, e.g. the flow in the domain Ω , naturally with appropriate conditions of periodicity on the curves 0 x = γ(x )andx = γ(x )+τ,d ≤ x ≤ d . 2 1 2 1 i 1 o Letusfurther,forsimplicity,writeonlyΩinsteadofΩ andletusalsousethisnotation: 0 Γ – thelinesegmentA A , i 0 1 Γ – thelinesegmentB B , o 0 1 Γ – thegraphofthefunctionx = γ(x ),d ≤ x ≤ d , − 2 1 i 1 o Γ – thegraphofthefunctionx = γ(x )+τ,d ≤ x ≤ d , + 2 1 i 1 o 7 Γ – coincideswiththecurveC . w 0 Thesymbols(Γ)◦,(Γ )◦,(Γ )◦,(Γ )◦ denotethecurvesΓ,Γ ,Γ ,Γ withouttheirend i o − + i o − + points: (Γ)◦ – theopenlinesegmentA A , i 0 1 (Γ )◦ – theopenlinesegmentB B , o 0 1 (Γ )◦ – thegraphofthefunction x = γ(x ), d < x < d , − 2 1 i 1 o (Γ )◦ – thegraphofthefunction x = γ(x )+τ, d < x < d . + 2 1 i 1 o Usingthisnotation,wehave ∂Ω = Γ ∪ Γ ∪ Γ ∪ Γ ∪ Γ . i o − + w Fig.2showsthedomainΩwithallthepointsandcurveswhichformitsboundary. (cid:54) x 2 Γ A (cid:54) + 1 Γ τ w (cid:24)(cid:24)(cid:24)(cid:24)(cid:24)(cid:58)(cid:24)(cid:58) Γi (cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0) B 1 x 1 (cid:45) (cid:81) (cid:24)(cid:24)(cid:24)(cid:58) Γ (cid:81)(cid:81)(cid:81)(cid:115) o (cid:81) (cid:24)(cid:24)(cid:24)(cid:58) A (cid:63) Γ− Ω (cid:81)(cid:81)(cid:81)(cid:81)(cid:115) 0 (cid:81) (cid:81)(cid:81)(cid:115) (cid:81) (cid:81) (cid:81)(cid:81)(cid:115) (cid:81) B (cid:81) 0 (cid:81)(cid:81)(cid:115) x = d x = d 1 i 1 o Fig.2 8

Description:
Matematick´e modelov´anı vazk´eho nestlaˇciteln´eho proudˇenı profilovou mˇrıˇzı. DISERTA ˇCNÍ PR ´ACE. ˇCERVEN 2007. RNDr. Tom´aš Neustupa
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.