UNIVERSITY OF ZAGREB Faculty of Mechanical Engineering and Naval Architecture MASTER’S THESIS GregorCvijetic´ Zagreb,2015 UNIVERSITY OF ZAGREB Faculty of Mechanical Engineering and Naval Architecture ANALYSIS AND IMPLEMENTATION OF THE HARMONIC BALANCE METHOD IN COMPUTATIONAL FLUID DYNAMICS Supervisor: Student: Prof. HrvojeJasak,PhD GregorCvijetic´ Zagreb,2015 I would like to express my gratitude to all those whose comments, insights and advices were a greathelptomewhileworkingonthethesis. I am truly thankful to Professor Hrvoje Jasak for being my supervisor, suggesting me a remarkably challenging topic for my thesis and giving me a plenty of constructive comments and encouragement whenever needed. Without his support, and what is more important, without his guidance in extending my knowledge in the area of CFD and programming, this thesiswouldnothavebeenpossible. My friends and colleagues also deserve my sincere thank you, and my special thanks goes to VukoVukcˇevic´ whosevaluablecommentspointedmealwaysintherightdirection;TessaUroic´ for providing mesh for majority of test cases and for her willingness to modify it regardless of howdifficultitwas;andInnoGatinwhowasalwaysreadyformeaningfuldiscussions. Finally, I am deeply grateful for the patience, understanding and love I have received from my meanvalue∗,Tamara. Thankyou, GregorCvijetic´ ∗Seechapter3.2. Iherebydeclarethatthisthesisisentirelytheresultofmyownworkexceptwhereotherwise indicated. IhavefullycitedallusedsourcesandIhaveonlyusedtheonesgiveninthelistof references. GregorCvijetic´ GregorCvijetic´ TableofContents Table of Contents Abstract ix Sažetak x Proširenisažetak xi 1 Introduction 1 2 MathematicalModel 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 ScalarTransportEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 Navier–StokesEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.5 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 HarmonicBalanceMethod 6 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 FourierSeriesExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 HarmonicBalanceforScalarTransport . . . . . . . . . . . . . . . . . . . . . 9 3.3.1 FiniteVolumeImplementation . . . . . . . . . . . . . . . . . . . . . . 17 3.4 HarmonicBalancefortheNavier-StokesEquations . . . . . . . . . . . . . . . 18 3.4.1 DiscretisationoftheNavier-StokesEquations . . . . . . . . . . . . . . 18 3.4.2 DerivationofthePressureEquation . . . . . . . . . . . . . . . . . . . 19 3.4.3 HarmonicBalancefortheNavier–StokesSystem . . . . . . . . . . . . 20 3.4.4 The Finite Volume Implementation of Harmonic Balance for the Navier–StokesSystem . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Example: EquationSetfor1Harmonic . . . . . . . . . . . . . . . . . . . . . . 23 3.6 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ScalarTransportValidation 27 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 ComputationalDomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 TestCase1-SingleSineWave . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 TestCase2-TwoHarmonicWaves . . . . . . . . . . . . . . . . . . . . . . . 31 4.4.1 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 FacultyofMechanicalEngineeringandNavalArchitecture i GregorCvijetic´ TableofContents 4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.5 TestCase3-RampedSquareWave . . . . . . . . . . . . . . . . . . . . . . . 34 4.5.1 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6 TestCase4-ComplexSquareWave . . . . . . . . . . . . . . . . . . . . . . . 36 4.6.1 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 HarmonicBalanceNavier-StokesValidation 39 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 NACA2412TestCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.1 ComputationalDomain . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.2 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2.4 ApproximationsIntroduced . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 CPUTimeComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.4 TestCaseswithUnknownFrequency . . . . . . . . . . . . . . . . . . . . . . . 55 5.4.1 LaminarCylinderVortexSheddingTestCase . . . . . . . . . . . . . . 55 5.4.2 EdgeToneNoiseTestCase . . . . . . . . . . . . . . . . . . . . . . . . 57 5.5 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 ConclusionandFutureWork 61 FacultyofMechanicalEngineeringandNavalArchitecture ii GregorCvijetic´ Nomenclature Nomenclature Greekletters γ Diffusioncoefficient m2/s ν Kinematicviscosity m2/s ω Angularfrequency 1/s Latinletters RRRˆ Discretetimedomainresidualfield m/s UUUˆ Discretetimedomainvelocityfield m/s Q Scalarfieldintimedomain - QQQ MatrixofvariableQindiscretetimeinstants - R Scalartransportequationresidualintimedomain - RRR MatrixofvariableRindiscretetimeinstants - RRR Timedomainresidualfield m/s UUU Timedomainvelocityfield m/s UUUo Timedomainvelocityfieldfrompreviousiteration m/s A Coefficientmatrix - E Transformationmatrixfromtimetofrequencydomain - E−1 Transformationmatrixfromfrequencytotimedomain - Q Fouriercoefficientmatrix - R Fouriercoefficientmatrix - u Velocityvector m/s uo Velocityfieldfromthepreviousiteration m/s u MeanvalueFouriercoefficientforvelocityexpansion m/s 0 u Neighbouringcellvelocity m/s N FacultyofMechanicalEngineeringandNavalArchitecture iii GregorCvijetic´ Nomenclature u Cellvelocity m/s P u Fouriercoefficientforvelocityexpansionmultiplyingcosineterm m/s Cn u Fouriercoefficientforvelocityexpansionmultiplyingsineterm m/s Sn u Velocityfieldintimeinstantt m/s t j j P Coefficientsubstitutingthesummationterm - i Q Scalarfield,zerothharmonicofFourierseries - 0 Q Scalarfield,Fouriercoefficientofnthharmonicmultiplyingthecosineterm - Cn Q Scalarfield,Fouriercoefficientofnthharmonicmultiplyingthesineterm - Sn R Residual,zerothharmonicofFourierseries - 0 R Residual,Fouriercoefficientofnthharmonicmultiplyingthecosineterm - Cn R Residual,Fouriercoefficientofnthharmonicmultiplyingthesineterm - Sn A Scalarcoefficient,sinewaveamplitude - a FirsttermofFourierseries,meanvalue - 0 a MatrixcoefficientcorrespondingtotheneighbourN - N a Fouriercoefficientofnthharmonicmultiplyingcosineterm - n A2 Energyofthenthharmonic - n a Centralcoefficient - P B Scalarcoefficient,cosinewaveamplitude - b Fouriercoefficientofnthharmonicmultiplyingsineterm - n F Massfluxthroughtheface m3/s f Frequencyoftheperiod Hz f Cosinewavefrequency Hz cos f Sinewavefrequency Hz sin k Summationindex - FacultyofMechanicalEngineeringandNavalArchitecture iv GregorCvijetic´ Nomenclature n NumberofharmonicinFourierseries - P PeriodinFourierseries - p Kinematicpressure m2/s2 q Sourcesandsinksofscalarfield - v Q DiscretevariableQinthenthtimestepwithinaperiod - tn S Facearea - T Scalarfield - t Time s T Scalarfieldcorrespondingtotimeinstantt - j j t nthtimestepwithinaperiod s n x ArgumentofthefunctiondecomposedinFourierseries - x Initialpointoftheperiod - 0 FacultyofMechanicalEngineeringandNavalArchitecture v
Description: