ebook img

Mastering the Discrete Fourier Transform in One, Two or Several Dimensions: Pitfalls and Artifacts PDF

388 Pages·2013·35.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mastering the Discrete Fourier Transform in One, Two or Several Dimensions: Pitfalls and Artifacts

Computational Imaging and Vision 43 Isaac Amidror Mastering the Discrete Fourier Transform in One, Two or Several Dimensions Pitfalls and Artifacts Mastering the Discrete Fourier Transform in One, Two or Several Dimensions: Pitfalls and Artifacts Computational Imaging and Vision ManagingEditor MAXVIERGEVER UtrechtUniversity,Utrecht,TheNetherlands SeriesEditors GUNILLABORGEFORS,CentreforImageAnalysis,SLU,Uppsala,Sweden DANIELCREMERS,TechnischeUniversitätMünchen,München,Germany RACHIDDERICHE,INRIA,SophiaAntipolis,France KATSUSHIIKEUCHI,TokyoUniversity,Tokyo,Japan REINHARDKLETTE,UniversityofAuckland,Auckland,NewZealand ALESLEONARDIS,ViCoS,UniversityofLjubljana,Ljubljana,Slovenia STANZ.LI,CASIA,Beijing&CIOTC,Wuxi,China DIMITRISN.METAXAS,RutgersUniversity,NewBrunswick,NJ,USA HEINZ-OTTOPEITGEN,CeVis,Bremen,Germany JOHNK.TSOTSOS,YorkUniversity,Toronto,Canada This comprehensive book series embraces state-of-the-art expository works and advanced researchmonographsonanyaspectofthisinterdisciplinaryfield. Topicscoveredbytheseriesfallinthefollowingfourmaincategories: • ImagingSystemsandImageProcessing • ComputerVisionandImageUnderstanding • Visualization • ApplicationsofImagingTechnologies Onlymonographsormulti-authoredbooksthathaveadistinctsubjectarea,thatiswhereeach chapterhasbeeninvitedinordertofulfillthispurpose,willbeconsideredfortheseries. Volume43 Forfurthervolumes: http://www.springer.com/series/5754 Isaac Amidror Mastering the Discrete Fourier Transform in One, Two or Several Dimensions Pitfalls and Artifacts Isaac Amidror School of Computer and Communication Sciences Peripheral Systems Laboratory Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland ISSN1381-6446 ISBN 978-1-4471-5166-1 ISBN 978-1-4471-5167-8 (eBook) DOI 10.1007/978-1-4471-5167-8 Springer London Heidelberg New York Dordrecht Library of Congress Control Number: 2013941876 (cid:77)(cid:97)(cid:116)(cid:104)(cid:101)(cid:109)(cid:97)(cid:116)(cid:105)(cid:99)(cid:115)(cid:83)(cid:117)(cid:98)(cid:106)(cid:101)(cid:99)(cid:116)(cid:67)(cid:108)(cid:97)(cid:115)(cid:115)(cid:105)(cid:174)(cid:99)(cid:97)(cid:116)(cid:105)(cid:111)(cid:110)(cid:32)(cid:40)(cid:50)(cid:48)(cid:49)(cid:48)(cid:41)(cid:58)(cid:32)(cid:54)(cid:53)(cid:84)(cid:53)(cid:48)(cid:44)(cid:52)(cid:50)(cid:65)(cid:57)(cid:57)(cid:44)(cid:52)(cid:50)(cid:66)(cid:57)(cid:57) © Springer-Verlag London 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To my parents An expert is a man who has made all the mistakes, which can be made, in a very narrow field. Niels Bohr [Mackay91 p. 35] Front cover image: Aliasing due to insufficient sampling rate may give unexpected shapes both in the signal domain and in the spectral domain. See Fig. 5.17(k). Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The discrete Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 A brief historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 The scope of the present book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Overview of the following chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 About the graphic presentation of sampled signals and discrete data . . . . . . 7 1.5.1 Graphic presentations in the 1D case . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.2 Graphic presentations in the 2D case . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.3 Graphic presentations in the MD case . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 About the exercises and the internet site . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Background and basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 The continuous Fourier transform: definitions and notations . . . . . . . . . . . . 15 2.3 The discrete Fourier transform: definitions and notations . . . . . . . . . . . . . . . 17 2.4 Rules for deriving new Fourier transforms from already known ones . . . . . 21 2.4.1 Rules for the 1D continuous Fourier transform . . . . . . . . . . . . . . . . 22 2.4.2 Rules for the 2D continuous Fourier transform . . . . . . . . . . . . . . . . 23 2.4.3 Rules for the MD continuous Fourier transform . . . . . . . . . . . . . . . 25 2.4.4 Rules for the 1D discrete Fourier transform . . . . . . . . . . . . . . . . . . 26 2.4.5 Rules for the 2D discrete Fourier transform . . . . . . . . . . . . . . . . . . 28 2.4.6 Rules for the MD discrete Fourier transform . . . . . . . . . . . . . . . . . 29 2.5 Graphical development of the DFT — a three-stage process . . . . . . . . . . . . 31 2.6 DFT as an approximation to the continuous Fourier transform . . . . . . . . . . 36 2.7 The use of DFT in the case of periodic or almost-periodic functions . . . . . . 41 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3. Data reorganizations for the DFT and the IDFT . . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Reorganization of the output data of the DFT . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 Reorganization of the input data of the DFT . . . . . . . . . . . . . . . . . . . . . . . . . 47 vii viii Contents 3.4 Data reorganizations in the case of IDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4. True units along the axes when plotting the DFT . . . . . . . . . . . . . . . . . . . . . . 69 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 True units for the input array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 True units for the output array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 The particular case of periodic functions . . . . . . . . . . . . . . . . . . . . . 74 4.4 True units for the DFT element values (heights along the vertical axis) . . . . 78 4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5. Issues related to aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Aliasing in the one dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3 Examples of aliasing in the one dimensional case . . . . . . . . . . . . . . . . . . . . . 95 5.4 Aliasing in two or more dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.5 Examples of aliasing in the multidimensional case . . . . . . . . . . . . . . . . . . . . 114 5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.7 Signal-domain aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6. Issues related to leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2 Leakage in the one dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.3 Examples of leakage in the one dimensional case . . . . . . . . . . . . . . . . . . . . . 148 6.4 Errors due to signal-domain truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.5 Spectral impulses that fall between output array elements . . . . . . . . . . . . . . . 162 6.6 Leakage in two or more dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.6.1 The case of 2D 1-fold periodic functions . . . . . . . . . . . . . . . . . . . . 170 6.6.2 The case of 2D 2-fold periodic functions . . . . . . . . . . . . . . . . . . . . 172 6.6.3 The general MD case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.7 Signal-domain leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7. Issues related to resolution and range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 7.2 The choice of the array size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Contents ix 7.3 The choice of the sampling interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.4 The choice of the sampling range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.5 The choice of the frequency step and of the frequency range . . . . . . . . . . . . 189 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 8. Miscellaneous issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8.2 Representation of discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8.3 Phase related issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 8.4 Symmetry related issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 8.5 Jaggies on sharp edges as aliasing or reconstruction phenomena . . . . . . . . . 210 8.6 Sub-Nyquist artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 8.7 Displaying considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 8.8 Numeric precision considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Appendices A. Impulses in the continuous and discrete worlds . . . . . . . . . . . . . . . . . . . . . . . 247 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 A.2 Continuous-world impulses vs. discrete-world impulses . . . . . . . . . . . . . . . 247 A.3 Impulses in the spectral domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 A.4 Impulses in the signal domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 B. Data extensions and their effects on the DFT results . . . . . . . . . . . . . . . . . . . 265 B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 B.2 Method 1: Extending the input data by adding new values beyond the original range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 B.3 Method 2: Extending the input data by denser sampling within the original range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 B.4 Method 3: Extending the input data by adding zeroes after each value (zero packing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 B.5 Method 4: Extending the input data by replicating it . . . . . . . . . . . . . . . . . . 269 B.6 Method 5: Extending the input data by replicating each of its elements . . . . 269 B.7 Method 6: Extending the input data by adding zeroes beyond its original range (zero padding) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 B.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Description:
The discrete Fourier transform (DFT) is an extremely useful tool that finds application in many different disciplines. However, its use requires caution. The aim of this book is to explain the DFT and its various artifacts and pitfalls and to show how to avoid these (whenever possible), or at least
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.