Toxicon107(2015)163e174 ContentslistsavailableatScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Mass spectrometry guided venom profiling and bioactivity screening of the Anatolian Meadow Viper, Vipera anatolica Bayram Go€çmen a,1, Paul Heiss b,1, Daniel Petras b, Ayse Nalbantsoyc,*, Roderich D. Süssmuth b,** aZoologySection,DepartmentofBiology,FacultyofScience,EgeUniversity,35100Bornova,Izmir,Turkey bTechnischeUniversita€tBerlin,InstitutfürChemie,Strassedes17.Juni124,10623Berlin,Germany cDepartmentofBioengineering,FacultyofEngineering,EgeUniversity,Bornova,35100Izmir,Turkey a r t i c l e i n f o a b s t r a c t Articlehistory: This contribution reports on the first characterization of the venom proteome and the bioactivity Received1August2015 screening of Vipera anatolica, the Anatolian Meadow Viper. The crude venom as well as an isolated Receivedinrevisedform dimeric disintegrin showed remarkable cytotoxic activity against glioblastoma cells. Due to the rare 27August2015 occurrence and the small size of this species only little amount of venom was available, which was Accepted10September2015 profiledbymeansofacombinationofbottom-upandtop-downmassspectrometry.Fromthisanalysis Availableonline16September2015 weidentifiedsnakevenommetalloproteases,cysteine-richsecretoryproteinisoforms,ametalloprotease inhibitor,severaltypeA2phospholipases,disintegrins,asnakevenomserineprotease,aC-typelectin Keywords: and a Kunitz-type protease inhibitor. Furthermore, we detected several isoforms of abovementioned Viperidae AnatolianMeadowViper proteinsaswellaspreviouslyunknownproteins,indicatinganextensivecomplexityofthevenomwhich Viperaanatolica wouldhaveremainedundetectedwithconventionalvenomicapproaches. Snakevenomics ©2015ElsevierLtd.Allrightsreserved. Top-downvenomics Cytotoxicity Bioactivityscreening 1. Introduction exampleiscaptopril,anlifesavinganti-hypertensivedrugderived from a bradykinin potentiating peptide from Bothrops jararaca Snake venom, which consists mainly of a mixture of proteins (Ferreira,1965;Rubinetal.,1978),apitviperfromthetropicaland andpeptides,hasevolvedovereonsofyearstoimmobilizeandkill subtropical forests in southern Brazil, Paraguay and the North of the prey as fast and as efficient as possible. Snake venoms also Argentina(Goncalves-Machadoetal.,2015).Nevertheless,notonly causemanyhumanfatalities(>90,000)eachyear(Casewelletal., for the treatment of cardiovasculardiseases snake toxins maybe 2014).Apartfromtheseterribleconsequencesofsnakeenvenom- applicable,astherehavebeenreportedeffectsagainstneuropathic ation, the toxins also represent an important natural source of pain(Woolf,2013)andtumors(Calderonetal.,2014).Particularly potential leadstructuresfor thetreatmentofvarioushumandis- non-toxic doses of snake venom have been shown to reduce the eases (Kang et al., 2011; McCleary and Kini, 2013). The medical size of solid tumors as well as inhibition of tumor angiogenesis potentialofsnakevenomswasalreadyknownintheancientworld, (Swensonetal.,2004;Zhouetal.,2000). whereitwasusedinsmalldosesasatraditionalmedicine(Vetter Ingeneral,snaketoxinstargetawiderangeofcellularmecha- et al., 2011). Currently there are six FDA-approved drugs on the nisms,whicharetypicallyneuralreceptors,thecellmembraneand marketwhicharebasedonvenomtoxins(King,2011)ofwhichthe thebloodcoagulationcascade(Chippaux,2006).Accordingly,the majority originate from snakes. One of the most prominent toxinshavebeengroupedintoneurotoxins,cytotoxinsandhemo- toxinscomposedofaround10proteinfamilies(three-fingertoxins; protease inhibitors; C-type lectins; vascular-, endothelial- and nerve growth factors; cysteine-rich secretory proteins (CRISPs), * Correspondingauthor. ** Correspondingauthor. metallo-proteases (SVMP); serine-proteases (SVSP); L-amino acid oxidases (LAAO); acetylcholine esterases (AChEs) and nucleotid- E-mail addresses: [email protected] (A. Nalbantsoy), roderich. [email protected](R.D.Süssmuth). ases) as well as peptides resulting from proteolytic cleavage 1 Bothauthorscontributedequallytothiswork. http://dx.doi.org/10.1016/j.toxicon.2015.09.013 0041-0101/©2015ElsevierLtd.Allrightsreserved. 164 B.Go€çmenetal./Toxicon107(2015)163e174 (bradykinin-potentiating peptides, natriuretic peptides, dis- 2.2. Determinationofproteinconcentration integrinsandSVMP-inhibitors)(Chippaux,2006;Fry,2015). Overthepastdecades,theanalyticalcharacterizationofvenom Protein concentration was determined from diluted venom has been continuously enhanced by technological developments. sample(4mg/mL)indeionizedwaterbyBradfordassay(Bradford, Theimplementationofmassspectrometrictechniquesintoprote- 1976) using a UV/Vis spectrophotometer (VersaMax, Molecular omic workflows as well as next-generation sequencing, have Devices, CA, USA) at awavelength of l ¼ 595 nm. Bovine serum advancedtheanalysisofsnakevenomssignificantly.Sincevenom albuminwasusedasareference. research evolved mainly from hypothesis-driven approaches, focused on single toxins, to a systematic, untargeted analysis, several so-called “bottom-up” approaches have been developed 2.3. Cellcultureandinvitrocytotoxicityassay (Calvete, 2014). These techniques typically include a proteolytic digestionoftheproteinstofacilitatetheiranalysisandidentifica- The following cell lines were used for determination of cyto- toxicity: HeLa (human cervix adenocarcinoma), A-549 (human tion (Calvete, 2013). The digestion step however multiplies the alveolaradenocarcinoma),MCF-7(humanbreastadenocarcinoma), numberofmoleculespresentinasampleanddisconnectstructural CACO-2 (human colon colorectal adenocarcinoma), mPANC96 relation within highly homologous isoforms and eventually occurring post-translational modified proteins. To overcome the (humanpancreasadenocarcinoma),PC-3(humanprostateadeno- carcinoma), U87MG (human glioblastoma-astrocytoma) cancer samplecomplexationandlossofinformationbyproteasedigestion cells and as a non-cancerous cell lines, HEK (human embryonic werecentlyintroducedatop-downmassspectrometricapproach kidney).CelllineswerepurchasedfromATCC(Manassas,VA,USA). in an exemplary study of King Cobravenom (Petras et al., 2015). ThePC3celllinewasobtainedfromDr.K.Korkmaz(EgeUniversity, However, even equipped with a set of toolboxes, including high BioengineeringDepartment,Bornova-Izmir,Turkey).Allcellswere throughput techniques capable of a rapid and systematic venom cultivatedinDulbecco'smodifiedEagle'smediumF12(DMEM/F12), analysis, only few venoms from over 600 biomedically relevant supplemented with 10% fetal bovine serum (FBS), 2 mM/L gluta- snakespecieshavebeenthoroughlystudied(Brahmaetal.,2015; Calvete, 2013). Furthermore, most of these studies only reflect a mine,100U/mLofpenicillinand100mg/mLofstreptomycin(Lonza, Visp,Switzerland).Thecellswereincubatedat37(cid:3)Cinahumidi- partialpictureofthewhole-venomofacertainsnakespecies,since toxinstructuresandvenomcompositionshowconsiderableintra- fiedatmosphereof5%CO2. specific and geographic variability (Casewell et al., 2014; Reyes- Cytotoxicityofcrudevenomwasdeterminedbyfollowingthe generalprocedurebasedoncellviabilityusingamodifiedcolori- Velascoetal.,2015;Vonketal.,2013). metric MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetra- The distribution of poisonous snakes inTurkey includes three zoliumbromide)]assay(Mosmann,1983;Yalcinetal.,2014).The families: Colubridae, Viperidae and Elapidae. Particularly, viper speciesarequiteabundantandsomespeciesareendemic(Go€çmen optical density (OD) was measured in triplicates at l ¼ 570 nm (withareferencewavelengthl¼690nm)byUV/Visspectropho- etal.,2006a).TheAnatolianMeadowViper,Viperaanatolica,which was first recognized as a differentiated taxon among the Euro- tometry(Thermo,Bremen,Germany).Allcelllineswerecultivated Asiaticvipersin1983(Bo€hmeandJoger,1983)canonlybefound for 24 h in 96-well microplates with an initial concentration of 1(cid:1)105cells/mL.Subsequently,theculturedcellsweretreatedwith inanarrowandlimitedareanearElmali,intheAntalyaprovince (Go€çmenetal.,2014).Tothebestofourknowledge,nostudieson differentdosesofvenomandincubatedfor48hat37(cid:3)C.Theplant- derived compound parthenolide (a sesquiterpene lactone) was the venom composition of V. anatolica have been reported in usedasapositivecytotoxiccontrolagent.Percentagesofsurviving literature so far. Thus, V. anatolica venom might be a source of cellsineachcultureweredeterminedafterincubationwithvenom. untapped bioactive peptides and proteins with interesting phar- Theviability(%)wasdeterminedbythefollowingformula: macologicalproperties.Asapartofourongoingresearchonsnake venoms from Turkish species, the purpose of this work was to profiling V. anatolica venom composition and to assess potential %Viablecells¼[(absorbanceoftreatedcells)(cid:4)(absorbanceof blank)]/[(absorbanceofcontrol)(cid:4)(absorbanceofblank)](cid:1)100 cytotoxicactivitiesagainstdifferentcancercelllines. 2. Materialandmethods 2.4. Determinationofhalfmaximalinhibitoryconcentration(IC50) 2.1. Collectionandpreparationofvenomsamples Incellculturestudiesforuntreatedcelllines(negativecontrols) The study was approved by the Ege University, Local Ethical cytotoxicitywassetto0%.TheIC50valueswerecalculatedbyfitting CommitteeofAnimalExperiment(Number:2010/43)andaspecial thedatatoasigmoidalcurveandusingafourparameterlogistic permission (2011/7110) for field studies was accepted from the model and presented as an average of three independent mea- Republic of Turkey, Ministry of Forestry and Water Affairs. All surements. The IC50 values were reported at 95% confidence in- specimenswerereleasedbackintotheirnaturalenvironmentafter terval and calculations were performed using Prism 5 software investigation. (GraphPad5, San Diego, CA, USA). The values of the blank wells V. anatolica individuals were collected from late April to mid- weresubtractedfromeachwelloftreatedandcontrolcellsandhalf October 2014 in Cıglıkara forests, North West of Kohu Mt. in Elmalı,AntalyaprovincesinTurkey,inaltitudesbetween1650and maximalinhibitionofgrowth(IC50)werecalculatedincomparison tountreatedcontrols. 1750m(MASL).CrudeV.anatolicavenomwasextractedfromtwo male and one female adult, using a paraffin-covered laboratory beaker without exerting pressure on the venom glands. Venom 2.5. Morphologicalstudies sampleswerepooledinonetubeandcentrifugedat2000(cid:1)gfor 10minatþ4(cid:3)Ctoremovecelldebris.Supernatantswerecollected, Themorphologicalstudiesofthecellswereperformedwithan immediately frozen at (cid:4)80 (cid:3)C, and then lyophilized. Lyophilized inverted microscope (Olympus, Tokyo, Japan) compared to the sampleswerestoredat4(cid:3)C. controlgroup48haftertreatment. B.Go€çmenetal./Toxicon107(2015)163e174 165 2.6. Preparationofvenomsamplesforproteomicanalysis manually, dried in avacuum centrifuge, chemically reduced with dithiothreitol(DTT)andsubmittedtoSDS-PAGE.SubsequentCoo- For LC-MS analysis and semi-preparative HPLC fractionation, massiestainedbandswereexcisedfromthegelandsubjectedtoin- crudevenomwasdissolvedinaqueous1%formicacid(HFo)(v/v)to gelreduction(10mMDTTin25mM(NH4)HCO3,pH8.3,for45min afinalconcentrationof10mg/mL,andcentrifugedat20,000gfor at 65 (cid:3)C) and alkylation (50 mM iodacetamide in 50 mM (NH4) 5min.Fortop-downmeasurementsdisulfidebondswerereduced. HCO3, pH 8.3, for 30 min at 25 (cid:3)C), followed by in-gel trypsin Therefore 10 mL of venom (10 mg/mL) was mixed with 10 mL of digestion(12hat37(cid:3)Cwith66ngsequencing-gradetrypsin/mLin tris(2-carboxyethyl)phosphine (TCEP, 0.5 M) and 30 mL of citrate 25 mM (NH4)HCO3,10% ACN; 0.25 mg/sample). Tryptic peptides buffer (0.1 M, pH 3), after which the reaction mixture was incu- weredriedinavacuumcentrifuge,re-dissolvedin15mLof5%ACN batedfor30minat65(cid:3)C.Thereafter,thesamplewasmixedwithan containing0.1%HFo,andsubmittedtoLC-MS/MSanalysisusinga equalvolumeof1%formicacidandcentrifugedat20,000(cid:1)gfor an Orbitrap XL hybrid mass spectrometer(Thermo, Bremen, Ger- 5min.Then10mLofbothreducedandnon-reducedsampleswere many) equipped with an HPLC system (Agilent, Waldbronn, Ger- submittedtotop-downmeasurements.Avolumeof100mLofnon- many).LCseparationwasperformedonaGraceVydac218MSC18 reduced venom was subjected for semi-preparative HPLC column (2.1 (cid:1) 15 mm, 5 mm) with a flow rate of 0.3 mL/min. A fractionation. gradientwasappliedusingof0.1%HFoinwater(solutionA)andin ACN (solution B). The gradient started isocratically with 5% B for 2.7. Top-downvenomics 2min,followedbyanincreaseover10minfrom5to40%B,40e99% B over 15 min, and held at 99% B for 5 min with final re- LC-ESI-HR-MS/MS experiments were performed on an LTQ equilibrationphaseat5%Bfor5min.MSexperimentswereper- Orbitrap XL mass spectrometer (Thermo, Bremen, Germany) formed in the Orbitrap analyser with R ¼ 15,000at m/z 400 and coupled to an Agilent 1260 HPLC system (Agilent, Waldbronn, maximumfillingtimeof200msforbothsurveyandfirstproduct Germany). A Suppelco Discovery 300 Å C18 (2 (cid:1) 150 mm, 3 mm ionscans.MS/MSfragmentationofthetwomostintenseionswas particlesize)columnwasused.Typicallytheflowratewassetto performedintheLTQusingCID(30msactivationtime);thecolli- 0.3 mL/min and a gradient of 0.1% HFo inwater(solution A) and sionenergywassetto35%.Precursor-ionisolationwasperformed 0.1%HFoinacetonitrile(ACN)(solutionB)wasused.Thegradient withinamasswindowof2m/z.Dynamicexclusionwassetupfora startedisocratically(5%B)for1min,followedbyanincreasefrom5 3m/zwindowsforupto50precursorionswitharepeatof2within to40%Bover40min,40e70%over20min,awashoutat70%Bfor 30s.DenovoannotationofMSMSspectrawasperformedwiththe 10min,andare-equilibrationphaseat5%B.ESIsettingswere40L/ DeNovoGUItool(Muthetal.,2014).Manuallyprovedsequencetags min sheath gas; 20 L/min auxiliary gas; spray voltage, 4.8 kV; weresearchedagainstaViperidaenon-redundantproteindatabase capillary voltage, 46 V; tube lens voltage, 135 V and capillary ofUniProtKB/TrEMBLusingBLASTP(Altschuletal.,1990). temperature,330(cid:3)C.Forinformationdependentacquisition(IDA), fourscaneventsweresetwith2microscansand500msmaximal 2.9. Relativetoxinquantification fill time. The survey scan was performed with mass resolution R¼100,000(atm/z400).ForMS/MSRwassetto60,000(atm/z The relative abundances (percentage of the total venom pro- 400).EverycyclecontainedtwoCIDscansofthetwomostabun- teins)ofthedifferentproteinfamilieswerecalculatedastheratioof dantionsofthesurveyscan.Normalizedcollisionenergywassetto thesumoftheareasofthereverse-phaseUV214-chromatographic 35%forCID.Thedefaultchargestatewassetto8þandtheacti- peakscontainingproteinsfromthesamefamilytothetotalareaof vationtimeto30msec.Theprecursorselectionwindowwassetto venomproteinpeaksinthereverse-phasechromatogramaccord- 2 m/z. Dynamicexclusionwasperformed witha 3 m/zexclusion ingtoCalveteetal.(Calvete,2014).Ifmorethanoneproteinwas windowforprecursorionswith1repeatwithin10s.Theexclusion present in a reverse-phase fraction, their proportions were esti- list contained maximal 50 ions for a duration of 20 s. For the mated by the relative abundance of deconvoluted top-down deconvolution of isotopically resolved spectra the XTRACT algo- spectra.Ifco-elutingproteins wereobservedbySDS-PAGE which rithm of Xcalibur (Thermo, Bremen, Germany) was used. For werenotaccessiblebymassspectrometry,theirrelativeabundance isotopicallynotresolvedspectratheZscorealgorithm(Zhangand wasestimatedbyopticalsignalstrengthoftheCoomassie-stained Marshall,1998)implementedinthemagictransformer(MagTran) bands(Goncalves-Machadoetal.,2015). tool was used for charge distribution deconvolution. For protein identifications, deconvoluted mass spectra were analyzed manu- 3. Resultsanddiscussion ally.TheresultingdenovogeneratedsequencetagswereBLASTed against the NCBI non-redundant Viperidae database (http://blast. 3.1. Viperaanatolica ncbi.nlm.nih.gov/Blast.cgi) using the BLASTP algorithm (Altschul etal.,1990). TheAnatolianMeadowViperisanviperspeciesendemicinan area less than 100 km2 east of Elmali, in Southwestern Anatolia, 2.8. Bottom-upvenomics Turkey(showninFig.1B).Thespeciesisextremelyrareandlisted ascriticallyendangeredontheIUNCRedlist2015(VarolToketal., Forbottom-upanalysis,thevenomwasdissolvedtoaconcen- 2015). It took us several years and expeditions to finally capture trationof10mg/mLinaqueous1%HFoand5%acetonitrile(ACN).A threeindividuals(2maleand1female)inlengthsbetween20and volumeof100mLwassubjectedtosemipreparativereverse-phase 40cm. Fig.1Ashowsaphotographofafemaleandamale indi- (RP) HPLC separation on a Suppelco Discovery 300 Å C18 vidual in their natural habitat. Venom of each individual was (4.6(cid:1)150mm,3mmparticlesize)column.Theflowratewassetto extractedtwiceandfreezedried,whichyieldedatotalamountof 1mL/min.Alineargradientof0.1%HFoinwater(solutionA)and ~1 mg dried venom. The peptide and protein concentration was 0.1%HFoinACN(solutionB),isocratically(5%B)for5min,followed determinedbymeansofaBradfordassayas~38%(wt%). bylineargradientsof5e40%Bfor95min,40e70%for20min,70%B Inordertoobtainadetailedpictureofthevenomcomposition for10min,andfinallyre-equilibrationat5%Bfor10minwasused. and to assess the cytotoxicity of isolated toxins we performed a Peakdetectionwasperformedatl¼214nmusingadiodearray detailed proteomic analysis and fractionation of the venom. It is detector (DAD). Chromatographic fractions were collected importanttonotethatthelimitedaccesstothesnakes,duetotheir 166 B.Go€çmenetal./Toxicon107(2015)163e174 Fig.1. A:PhotographofViperaanatolicaeThephotowastakenduringafieldtripinOctober2014atKohuMt.,Elmali,Antalya,Turkey.Theindividualontherightisanadultfemale; thesecondindividualisanadultmale.B:GeographicdistributionofViperaanatolica.TheAnatolianMeadowViperisanendemicviperspeciesinanarealessthan100km2eastof Elmali,insouthwesternAnatolia,Turkey,bluecircle.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.) lowabundance and the minimal amounts of venomavailable for sametimeoccurinlowconcentrations. mass spectrometric analysis, made a classic venomic protocol In order to obtain useful fragment spectra of toxins in subse- (HPLCfractionation,SDS-PAGE,ingeltrypsindigestionfollowedby quent MS2 experiments it was required to reduce potentially MSMSdenovosequencing)aimingatathoroughproteomicchar- occurringdisulfidebridgesoftoxinspriortotop-downanalysis.We acterization an extremely challenging task (Calvete, 2013, 2014; thusreducedthevenomchemicallyusingTCEPpriortoasecond Goncalves-Machado et al., 2015). This is exemplified by the fact LCMS run with data dependent MS2 acquisition. Because a thatthetypicalamountofvenomappliedtoonesemi-preparative comprehensive analysis of top-down data relies strongly on the HPLCrunequalstheamountofvenomwehadavailabletoperform availabilityof transcriptomeand/orgenomedata,whichyetdoes thecompleteanalyticalcharacterization.Inordertoobtainagen- not exist for V. anatolica and is still limited for closely related eraloverviewofthemolecularmassesofthevenomcomponents, Viperidae,wemanuallyanalyzedtheESImassspectraandsearched including low abundant and low molecular mass compounds denovogeneratedsequencetagsagainstaViperidaedatabaseusing whichmightnotbegatheredduringSDS-PAGE,wethusdecidedto the Blast algorithm. Using this method we could identify a PLA2 perform an initial top-down mass spectrometric analysis of the fragmentwiththesequencetag(1871)ALFSYSDYGCYCGWG(1931). crudevenom. Asthespectrumwasobtainedfromchemicallyreducedvenomthe observedfragmentationofthePLA2couldhaveoccurredduringthe 3.2. Top-downvenomics sample preparation before mass spectrometric analysis. Further- morewecoulddirectlyidentifyadisintegrinlikecompoundwith Intop-downapproachestheproteinsarenotdigestedpriorto thesequencetag(5085)-DYCTGJS-(221).Fig.3exemplarilyshows mass spectrometric analysis (Ge et al., 2002). Instead they are the deconvoluted top-down MS1 and MS2 spectra of the directlyionizedandthusrenderthemolecularmassoftheintact disintegrin-like venom protein with a molecular weight of protein. Ideally, if the protein is further fragmented in the gas 6047.5Da(peak11inFig.2).Inthetop-downMSanalysisthenon- phase,aminoacidsequencesandsitespecificmodificationscanbe reduced disintegrin like compounds (peak 11) instead showed determined. Therefore isotope resolution is typically required, in average molecular masses of 13,982.8, 14,001.7 and 14,017.7 Da ordertodeconvolutethecomplexfragmentspectra.Thisislimited which correspond to the SDS-PAGE analysis of the isolated peak by the resolution provided by the mass analyzer used, typically with a band height at ~ 14 kDa and thus indicates that the dis- <50kDaforOrbitrapanalyzerswithR¼100,000at400m/z.Asthe integrin in peak 11 is a hetero-dimer. Furthermore peak 4 (see majorityofthetoxinspresentinvipervenomsexceedthismolec- Fig. 2) could be identified as a snake venom metalloprotease in- ularweight(>50kDa,SVMPs,SVSPs,LAAOsetc.),onecanstillmake hibitor,whichiscommonlypresentinViperidaevenoms(Munekiyo useofdeconvolutionbasedonchargedistributionofproteinMS1 andMackessy,2005;Wagstaffetal.,2008).Nevertheless,through spectra. thedifficultiesinionizinganddeconvolutinghighmolecularmass AninherentlimitationofSDS-PAGEisthatsmallsizedpeptides components (>50 kDa) which represent the majority of the and proteins are not efficiently resolved which makes a direct V.anatolicavenomcontent,thepeptide/proteinIDsobtainedfrom HPLC-supported mass spectrometric analysis the most effective the initial top-down analysis are limited. A future solution to in- waytogatherstructuralinformation(Petrasetal.,2015).InFig.2 crease the number of protein IDs obtained by top-down MS/MS the UV chromatogram of the semi-preparative fractionation and wouldbeapre-fractionationbysizeexclusionchromatographyand the corresponding Coomassie-stained SDS-PAGE analysis of the thus an enrichment of the low abundant low molecular mass fractionsaswellasthetotalioncurrent(TIC)oftheLCMSanalysis toxins, whichare accessiblefortop-downMS/MSelucidationbut ofnativevenomisshown.Duetothedifferenceincolumnsizethe remainedunselectedduringtheIDAMS/MSexperiments.Afurther retentiontimesareslightlyshiftedbetweentheLCMSanalysisand generalimprovementforthevenomproteomeanalysiswouldbea thesemiprep-HPLCrun.Intheinitialtop-downmassprofiling~100 transcriptome analysis of V. anatolica venom gland tissue, which toxin masses were detected which are listed in Table 1 (All would enable the use of spectra-database comparisons for data deconvolutedmassspectra are shownin thesupplementalinfor- analysis, which is more effective than the generation of de novo mation).Intotalweobserved22molecularmasses<1kDaand53 sequencetagsandasubsequentBlastsearch. molecularmassesbetween1and9kDa,whichrepresents~75%of thepeptideandproteinspecies.Furthermoretheinitialtop-down 3.3. Bottom-upvenomics analysisrenderedanother27compoundsbetween9and60kDa. Interestingly, the majority of venom toxins seem to consist of Besides the initial top-down mass spectrometric characteriza- molecular masses in the low mass range (<9 kDa) which, at the tionrenderingintactvenomcomponents,whichalreadyshoweda B.Go€çmenetal./Toxicon107(2015)163e174 167 Fig.2. VenomprofileofViperaanatolica.Reverse-phaseHPLCseparationofV.anatolicavenomproteins.AshowstheSDS-PAGEanalysisoffractionscollectedfromthesemi- preparativeHPLCrundisplayedinB.Excisedproteinbandswereidentifiedbybottom-updenovosequencing.PanelCshowsthetop-downMS1analysis.[Molecularmasses, sequencetagsanddatabasehitsarelistedinTable2.Extractedanddeconvolutedmassspectraareshowninthesupplementalmaterial.ThedeconvolutedMS1andMS2spectraof peak11areshowninFig.4]. detailedpictureofthestructuraldiversityofthevenom,weiden- deconvoluted top-down spectra of proteins was taken as a mea- tified the remaining toxin families through the application of a sure.Ifaninefficientionizationofproteinswasobservedthesignal bottom-up approach. By means of HPLC fractionation, SDS-PAGE strengthofSDS-PAGEbandsservedasameasure.Hence,themost separation followed by in-gel digestion and LC-MS/MS analysis abundant toxin family is represented by snake venom metal- wecouldgenerate46denovosequencetags(Table1),representing loproteases(SVMP,41.5%),followedbytwocysteine-richsecretory seventoxinfamilies.Thepercentageofthevenomproteincontent protein isoforms (CRISP, 15.9%) with molecular masses of ispresentedinthepiechartinFig.4.Fordeterminationofrelative 24,645.0 Da and 24,544.1 Da, metalloprotease inhibitor (SVMPi, abundance(in%)ofvenomproteinstheintensitiesofUVpeakareas 9.3%),A2phospholipases(PLA2,8.1%),disintegrins(2.0%),asnake were used. In case of coelution the relative intensity of venom serine protease (SVSP, 1.6%), a C-type lectin (1.1%) and a 168 B.Go€çmenetal./Toxicon107(2015)163e174 Table1 VenompeptidesandproteinsidentifiedfromViperaanatolica.ProteinassignmentofRP-HPLCfractions(Fig.4)byLCMSandMS/MSanalysis.Peaknumberingcorrespondsto theUVandMSchromatogramsshowninFig.2.SequencetagsareobtainedbydenovoanalysisofintactproteinandtrypticpeptideMS/MSspectra.ProteinIDsareobtainedby BLASTPanalysisofthesequencetagsagainstaviperidnon-redundantproteindatabase.MolecularweightwasdeterminedbySDS-PAGE(*)andtop-downMSanalysis(#)and areshownasaveragemasses. Peak Identifiedsequencetag ProteinID BlastE-valueNCBIaccessionM[kDa]*M[Da]# Method number number 1 unknown(~peptide) 429.0;621.0;835.1; Top-downMS1 1071.0;1241.1 2 unknown(~peptide) 579.2;816.4;1269.6; Top-downMS1 1600.8;2049.0 3 unknown(~peptide) 969.4;1026.5 Top-downMS1 4 pQKW Metalloproteaseinhibitor 443.2 Denovofrom Top-downMS2 5 unknown(~peptide) 474.2;598.4;752.4;858.3;Top-downMS1 1128.6;1747.7 6 unknown(~peptide) 454.3;499.4;726.8 Top-downMS1 7 unknown(~peptide) 452.3;606.3 Top-downMS1 8 unknown(~peptide) 808.4;1128.6;3943.8 Top-downMS1 9 (423.02)-YGGCGGNANNFK-COOH ~Kunitz-typeserine 2.0E-08 P0DKL8.1 14 6737.9 Denovofrom proteaseinhibitor Trypsin-digest, Top-downMS1, MassfromSDS-Page unknown(~peptide) 452.3;497.4;707.4;781.4;Top-downMS1 3137.5;4014.8; 4848.2;5123.4 10 unknown(~Protein) 14;56 MassfromSDS-Page unknown(~peptide) 1115.6;3119.5;3233.5 Top-downMS1 11 NH2-FJNAGTJCQY-(227.02) ~DisintegrinVA6 3.0E-04 P0C6A5.1 14 13,982.8;14,001.7; Denovofrom 14,017.7 Trypsin-digest, Top-downMS1, MassfromSDS-Page (532.05)-DYCDGJSSDGVDR-COOH ~DisintegrinVB7A 2.0E-02 P0C6A6.1 (1001.56)-YQTGJSSDCPR-COOH ~DisintegrinVB7B 6.0E-04 P0C6A7.1 (5085)-DYCTGJS-(221) ~DisintegrinVB7A 1.2E-02 6047.5(reduced) Denovofrom Top-downMS2 12 unknown(~peptide) 14 1457.7;6817.2 Top-downMS1;Mass fromSDS-Page 13 unknown(~peptide) 14 MassfromSDS-Page unknown(~peptide) 1101.5;1357.7;6965.2; Top-downMS1 7001.2;7227.1 14 (241.03)-JCFGDQJNTYDK-COOH ~Neutralphospholipase 1.0E-05 P34180.2 14 13,639.9(5461.6) DenovofromTrypsin-digest, (1871)ALFSYSDYGCYCGWG(1931).A2ammodytinI2 7.0E-12 CAE47236.1 Top-downMS1, ~ammodytinI2(C)isoform Top-downMS2,Mass fromSDS-Page unknown(~Protein) 6948.3;6982.2 Top-downMS1 15 unknown(~Protein) 7175.4;7212.4;7293.5 Top-downMS1 16a unknown(~Protein) 35 MassfromSDS-Page 16b (890.35)-VAAJCFGENJNS-(548.34) ~Neutralphospholipase 5.0E-06 P34180.2 14 13,637.9 DenovofromTrypsin-digest, A2ammodytinI2 Top-downMS1,Mass fromSDS-Page (354.21)-CFGENJNTYDKK-COOH ~Neutralphospholipase 5.0E-09 P34180.2 14 7276.4;7903.7 DenovofromTrypsin-digest, A2ammodytinI2 Top-downMS1,Mass fromSDS-Page unknown(~Protein) 3772.2;5549.1;5586.1; Top-downMS1 5677.2;5713.1 17 NH2-SVNPTASNMJK-COOH ~Cysteine-richvenom 5.0E-07 B7FDI0.1 25 24,645.0 DenovofromTrypsin-digest, protein Top-downMS1,Mass fromSDS-Page NH2-SVDFDSESPR-COOH ~Cysteine-richvenom 3.0E-05 B7FDI0.1 protein NH2-FJDAYPEAAANAER-COOH ~Cysteine-richvenom 7.0E-06 B7FDI0.1 protein (225.09)-EJQNEEPDJHNSJR-COOH ~Cysteine-richvenom 2.0E-05 B7FDI0.1 protein 18 (439.24)-ECGENJYMSTSEVK-COOH~Cysteine-richvenom 1.0E-05 B7FDI0.1 25 24,544.1 DenovofromTrypsin-digest, protein Top-downMS1,Mass fromSDS-Page 19a NH2-AYJGTMCQPK-COOH ~H3metalloproteinase 1.2E-02 AGL45259.1 55 46,397.0 DenovofromTrypsin-digest, precursor1 Top-downMS1,Mass fromSDS-Page 19b unknown(~Protein) 35 MassfromSDS-Page 19c (186.09)-DFTTESPR-COOH ~Cysteine-richvenom 8.6E-02 B7FDI0.1 25 DenovofromTrypsin-digest, protein Top-downMS1,Mass fromSDS-Page 19 unknown(~Protein) 1375.8;6067.3;6166.3 Top-downMS1 20a unknown(~Protein) 60 MassfromSDS-Page B.Go€çmenetal./Toxicon107(2015)163e174 169 20b NH2-JQGJVSWGS-(487.26) ~Snakevenomserine 5.0E-05 E5AJX2.1 35 DenovofromTrypsin-digest, proteasenikobin Top-downMS1,Massfrom SDS-Page NH2-JMGWGTJTTTK-COOH ~Snakevenomserine 4.5E-02 E5AJX2.1 proteasenikobin (699.24)-JJJEEWVJDQR-COOH ~Snakevenomserine 8.9E-01 E5AJX2.1 proteasenikobin NH2-FPNGDJKDLMJJR-COOH ~Snakevenomserine 4.4E-01 E5AJX2.1 proteasenikobin 20c (1350.51)-JVCDGGDDPGTR-COOH ~ammodytinI1(A) 9.5E-02 CAE47176.1 14 DenovofromTrypsin-digest, variant(PLA2) MassfromSDS-Page 21 NH2-TAJDFDGSVJGK-COOH ~metalloproteinase 5.7E-01 ADI47580.1 55 DenovofromTrypsin-digest, MassfromSDS-Page 20/21 unknown(~Protein) 3181.2;4688.4; Top-downMS1 5505.0:7376.8; 7833.8;12,891.8 22 unknown(~Protein) 8172.7;16,346.4, Top-downMS1 16,397.1 23aþ24a NH2-SSDJGFEDYSQJDR-COOH ~Zincmetalloproteinase 7.6E-01 P0DJE2.3 70 DenovofromTrypsin-digest, -disintegrin-like MassfromSDS-Page ammodytagin (895.05)-JJTFDDSFGEWR-COOH ~Zincmetalloproteinase 5.3E-01 P0DJE2.3 -disintegrin-like ammodytagin NH2-JPECJJNKPJR-COOH ~Zincmetalloproteinase 4.4E-01 P0DJE2.3 -disintegrin-like ammodytagin 24bþ25 (373.93)-GDDTJDSFGEWR-COOH ~metalloproteinaseF1 8.0E-05 AJC52543.1 60 DenovofromTrypsin-digest, MassfromSDS-Page NH2-YDYSEDPDYGFGD-(449.1) ~Zincmetalloproteinase 1.6E-01 P0DJE2.3 -disintegrin-like ammodytagin NH2-VNJJNEMYJPLNJR-COOH ~H3metalloproteinase 2.6E-01 AGL45259.1 23bþ24c NH2-VPJVGVEJWDHGDJJK-COOH ~H3metalloproteinase 4.0E-03 AGL45259.1 45 48,693.0 DenovofromTrypsin-digest, MassfromSDS-Page, Top-downMS1 NH2-VNJJNEFYLPJNJR-COOH ~H3metalloproteinase 3.7E-01 AGL45259.1 (174.31)-NJFGEDYSQJDR-COOH ~H3metalloproteinase 1.5E-02 AGL45259.1 23e25 unknown(~Protein) 4452.7;6299.4; Top-downMS1 10,102.4;11,831.3; 24,411.4 26 NH2-VPJVGVEJWDVPJTPR-COOH ~metalloproteinaseH4-A 2.2E-02 AHB62069.1 DenovofromTrypsin-digest 26 unknown(~Protein) 8594.1;16,106.5 Top-downMS1 27 unknown(~Protein) 50 MassfromSDS-Page unknown(~Protein) 6433.0;9356.4; TICTop-downMS1 16,586.1 29be30b NH2-TWFNJNCEER-COOH ~C-typelectin 1.0E-04 Q696W1.1 20 21,892.7 DenovofromTrypsin-digest, Top-downMS1,Mass fromSDS-Page 28e29 unknown(~Protein) 50 49,184;24,561.5 TICTop-downMS1, MassfromSDS-Page 30a unknown(~Protein) 48,281; TICTop-downMS1 30e32 unknown(~Protein) 27,058.0 TICTop-downMS1 31 (388.99)-PDDPDYGFVDJGTK-COOH ~Zincmetalloproteinase 1.0E-08 P0DJE2.3 50 DenovofromTrypsin-digest, -disintegrin-like MassfromSDS-Page ammodytagin NH2-TLGJAPVSGMCQPK-COOH ~metalloproteinaseH4-A 3.0E-06 AHB62069.1 NH2-HDNAQJJTGJDJN-(213.07) ~metalloproteinaseH4-A 7.0E-08 AHB62069.1 32 NH2-MTJEGFJTGLDJNGR-COOH ~Zincmetalloproteinase 2.1E-01 P0DJE2.3 50 DenovofromTrypsin-digest, -disintegrin-like MassfromSDS-Page ammodytagin NH2-DVGJAPVSGMCQPK-COOH ~metalloproteinaseH4-A 2.0E-04 AHB62069.1 (323.01)-ATSEQQR-COOH ~metalloproteinaseH4-A 1.1E-01 AHB62069.1 33a (260.16)-DHJDJJCJJNQPJR-COOH ~Zincmetalloproteinase 1.5E-02 Q0NZX6.1 65 32,076.0 DenovofromTrypsin-digest, -disintegrin MassfromSDS-Page, jararin Top-downMS1 (626.8)-NPESSJJNQPJR-COOH ~metalloproteinase 1.6E-01 ADI47709.1 33b NH2-HDNAQJJTGJD-(440.24) ~Zincmetalloproteinase 8.0E-05 U5PZ28.1 50 57,085.0 DenovofromTrypsin-digest, -disintegrin MassfromSDS-Page, BlatH1 Top-downMS1 NH2-VTSSGDDTJDSFGEGER-COOH ~metalloproteinase 5.0E-07 ADI47715.1 NH2-YYJNEMYJPJNJR-COOH ~metalloproteinase 2.0E-05 ADI47590.1 34a unknown(~Protein) 60 26,398.0 TICTop-downMS1, MassfromSDS-Page 34b unknown(~Protein) 35 27,603.0 TICTop-downMS1, MassfromSDS-Page 35a (493.29)-VSWGSCAQK-COOH 6.6E-02 Q58G94.1 170 DenovofromTrypsin-digest (continuedonnextpage) 170 B.Go€çmenetal./Toxicon107(2015)163e174 Table1(continued) ~Thrombin-likeenzyme gyroxinB2.1 35bþ36a NH2-JJEWSER-COOH ~metalloproteinaseF1 1.7E-02 AJC52543.1 50 25,225.0 DenovofromTrypsin-digest, MassfromSDS-Page, Top-downMS1 (37.19)-QJYYTPR-COOH ~H3metalloproteinase 7.0E-03 AGL45259.1 (339.04)-JTPEEKR-COOH ~H3metalloproteinase 4.9E-01 AGL45259.1 36a unknown(~Protein) 27 TICTop-downMS1, MassfromSDS-Page 36b unknown(~Protein) TICTop-downMS1, MassfromSDS-Page Fig.3. Top-downspectrumofchemicallyreducedpeak11,adisintegrin-likevenomcompound.PanelAshowsthedeconvolutedMS1spectrumofpeak11withamolecularmassof 6047.5Da(averagemass).InBthedeconvolutedMSspectraofthe7timeschargedprecursor(864.94m/z)isshown.Inthelowmassrangethey-ionsandinthehighmasszoomthe b-ionseriesisannotated,theresultingsequencetagisdisplayedabove(JstandsforeitherIorL).TheresultingdatabasehitisshowninTable2. B.Go€çmenetal./Toxicon107(2015)163e174 171 Fig.4. Semi-quantitativevenomcompositionofViperaanatolica.Thepiechartrepresentstherelativeoccurrenceofdifferenttoxinfamilies.Inouranalysisweidentifiedasnake venommetalloproteaseinhibitor(SVMPi);aKunitz-typeproteaseinhibitor;disintegrins;PhospholipasesoftypeA2(PLA2s);aCRISP,cysteine-richsecretoryproteins;SVMPs,snake venommetalloproteinase;aSVSP,snakevenomserineproteases,andaC-typelectin. Kunitz-typeproteaseinhibitor(0.3%). lines: CACO-2, human colon carcinoma epithelial cells; MCF-7, AsthefirstlineofquantificationreliesontheUVsignalfromthe human breast adenocarcinoma epithelial cells; U87MG, human HPLCrun,themolarextinctioncoefficientεofthepeptidesplaysa glioblastoma-astrocytoma epithelial-like cells; PC3, human pros- crucialroleforthepeakareasofthetoxins.Thus,ourquantification tate epithelial cells; HeLa, human cervical epithelial carcinoma is based on the simple assumption that these compound-specific cells; MPanc-96, humanpancreatic fibroblast cells; A549, human values are nearly equal. This indeed might be the case for com- lungepithelialcells;HEK293,humanembryonicepithelialkidney pounds of the same protein family but is rather unlikely for the cell; Vero, African green monkey fibroblast-like kidney cells. We comparisonofpeptideswithhighmolecularmassproteins.Espe- thereforeperformedinitialcytotoxicityassaysbymeansofanMTT ciallytheconcentrationoftheSVMPi,containingaTrpresidueat assaywhichmeasuresthemitochondrialreductaseactivityofcells the C-terminus, might be overestimated as ε-value is most likely andthereforeisameasureforviabilityofcells.InFig.5itcanbe higherthanoftheothercompounds.Thusthevenomcomposition seenthatcrudevenomoftheAnatolianMeadowViperinhibitscell hastobeconsideredassemi-quantitative. viability in a dose-dependent manner. The IC50 values for all affectedcelllinesareshowninTable2.MCF-7,MPanc-96andA549 3.4. Medicalimplications were herby the most resistant cell lines against all venom doses tested (IC50 > 50 mg/mL), while PC3, HEK293, CACO-2, Vero and Incomparisonwithotherviperspecies,effectsthroughenven- HeLacellswereonlymoderatelyaffected(IC50~4.9;5.5and7.2; omation caused by V. anatolica are generally low and not life 11.7 and 13.2 mg/mL respectively). The highest activity was threatening.AftertwoaccidentalbitecaseswithV.anatolicaduring observedagainstbraincancercells(U87MG)withanIC50valueof our field studies, the subjects (healthy, 51 and 28 years old, both ~0.8mg/mL,whichismorethanoneorderofmagnitudelowerthan male)reportedonlylocalpainanditchatthebittenareawithout against the non-cancerogenous cell lines (HEK293 and Vero). any other complications. Similar symptoms were reported by Remarkably, the crude venom cytotoxic effects on glioblastoma Krecsak et al. (Krecsak et al., 2011) for the closely related small- cellsaswellastheselectivitytocancercellsarenotablyhigherthan sized insectivorous snakes viper Vipera (Acridophaga) ursinii. On of the plant-derived sesquiterpene lactone parthenolide, a prom- theotherhand,inacasestudyaboutaccidentswithanotherviper ising candidate in anti-cancer research. Microphotography of speciestobefoundinTurkey,theblunt-nosedviper,Macrovipera treated cells (shown in the supplemental information) showed lebetinaobtusa,strongclinicalsymptomsandphysiologicaldamage similarresultsincomparisontotheMTTassay.Untreatedcellswere werereported(Go€çmenetal.,2006b).Thedifferenceinthetoxicity homogeneously distributed in the culture plates showing typical canbeexplainedbythebiggersizeandhigheramountofvenom morphological characteristics. Whereas morphological changes injected by M. lebetina obtusa, but also the higher abundance of wereobservedaftertreatmentwithcrudevenomfor48hvaried PLA2(~34%vs.~8%V.anatolica)(IgciandDemiralp,2012)mightbe depending on the origin of the cell lines. Increasing venom con- a reason for the stronger necrotic effects as well as swelling- centrationsresultedinahighernumberofrounded,detachedcells, associatedsymptoms. elevated mobility and distribution of cells on the surface, multi- cellular aggregate formation and growth inhibition compared to untreated cells. In addition, cell disorganization and large areas 3.5. Cytotoxicityscreening without cells were observed with increasing venom concentrations. To assess the potential of the toxins against cancer cells, we Becausetheamountoffractionatedvenomgenerallywerevery assessedthecytotoxicityofcrudevenomagainstthefollowingcell 172 B.Go€çmenetal./Toxicon107(2015)163e174 Fig.5. Viabilityofcancerandnon-cancerouscelllinesaftercrudevenomtreatmentfor48h.CellviabilitywasdeterminedbyMTTassay,controlwasexposedtovehicleonlywhich wastakenas100%viability.CACO-2,humancoloncarcinomaepithelialcells;MCF-7,humanbreastdenocarcinomaepithelialcells;U87MG,humanglioblastoma-astrocytoma epithelial-like cells; PC3, humanprostateepithelial cells;HeLa, human cervical epithelial carcinomacells;MPanc-96,humanpancreaticfibroblastcells;A549,human lung epithelialcells;HEK293,humanembryonicepithelialkidneycell;Vero,Africangreenmonkeyfibroblast-likekidneycells. Table2 inthesupplementalinformation).Hereby,theonlyactivefraction IC50valuesofV.anatolicacrudevenomandParthenolidetreatedcelllines.CACO-2, (Peak11),containingadimericdisintegrin,hadasignificantcyto- human colon carcinoma epithelial cells; MCF-7, human breast adenocarcinoma ehpuimthaenliaplrcoesltlast;eUe8p7iMthGe,lihaulmcealnls;glHioebLlaa,sthoummaa-nasctreorcvyictaolmeapeitphiethliealliacla-rlickineocmellas;cPeCll3s;, 0to.5x1ic±e0f.f0e4ctmgo/nmlgwlihoibclhasitsomsliaghtcleyllbsettweriththaanntheIC5IC050voaflucerudoef MPanc-96,humanpancreaticfibroblastcells;A549,humanlungepithelialcells; venom (0.75 mg/mL). However comparing the fractions activity HEK293, human embryonic epithelial kidney cell; Vero, African green monkey withtheactivityofparthenolidewefoundatwofoldhighercyto- fibroblast-likekidneycells. toxicity. If the molecular mass ratio between parthenolide and Celllines V.anatolicavenom[mg/mL] Parthenolide[mg/mL] disintegrin (248 Da: ~14.0 kDa) are considered, then the molar CACO-2 7.21±0.12 0.69±0.08 activityofpeak11(~36nM)isaround100timeshigherthanthatof MCF-7 >50 1.17±0.06 parthenolide.Incomparisontothecytotoxiceffectsofrecombinant U87MG 0.75±0.010 1.93±0.05 disintegrins,r-viridistatin2andr-mojastin1,peak11wassignifi- PHCe3La 41.38.515±±0.01.813 13..2383±±00..0172 ocafn1t0ly.6manorde8a.7ctimvMe(aLguaciennstaBeXtPaCl.-,320p1a5n)c.rTehateicdciseilnlstewgritinhcICo5lo0mvabliuse- MPanc-96 >50 0.58±0.02 A549 >50 1.66±0.09 tatin, isolated from Bothrops colombiensis, on the other hand HEK293 5.52±0.21 0.63±0.04 showedsimilarIC50againstT24andSK-Mel-28cells(4.4mMand Vero 11.65±0.16 2.58±0.10 33nM)(Sanchezetal.,2009). Cytotoxicactivityofdisintegrinsagainstglioblastoma,hasbeen described to be caused by targeting specific integrins ultimately low(0.04e9.03mg)theisolatedtoxinswereonlytestedagainstthe resulting in decrease of tumor growth, affecting invasion and mostsensitivecellline(U87MG)ofthecrudevenomcytotoxicity migration of tumor cells in carcinogenesis (Calvete et al., 2005; results.Theresultsforpeak11collectedbysemipreparativeHPLC Macedo et al., 2015). Cell adhesion and migration are important areshowninFig.6(Theresultsoftheotherfractionscanbefound stages in metastasis development in which integrins, a class of Fig.6. A:ViabilityofU87MGcellsaftertreatmentwithfraction11for48h.CellviabilitywasdeterminedinanMTTassay,normalizedtoacontrol(100%viability).B:Effectofthe isolateddisintegrinonU87MGcells.Cellsweretreatedwithfractionatedvenom(fraction11)for48hat37(cid:3)C.1:untreated,2:treatedwithpeak112mg/ml,3:treatedwith parthenolide,1.25mg/ml.
Description: