ebook img

Mass concentration and aging in the parabolic Anderson model with doubly-exponential tails PDF

81 Pages·2017·1.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mass concentration and aging in the parabolic Anderson model with doubly-exponential tails

Probab.TheoryRelat.Fields DOI10.1007/s00440-017-0777-x Mass concentration and aging in the parabolic Anderson model with doubly-exponential tails MarekBiskup1,2 · WolfgangKönig3,4 · RenatoS.dosSantos3 Received:4September2016/Revised:19March2017 ©Springer-VerlagBerlinHeidelberg2017 Abstract Westudythenon-negativesolutionu =u(x,t)totheCauchyproblemfor theparabolicequation∂ u =Δu+ξuonZd×[0,∞)withinitialdatau(x,0)=1 (x). t 0 HereΔisthediscreteLaplacianonZdandξ =(ξ(z))z∈Zd isani.i.d.randomfieldwith doubly-exponentialuppertails.We(cid:2)provethat,forlarget andwithlargeprobability, most of the total mass U(t) := u(x,t) of the solution resides in a bounded x neighborhood of a site Z that achieves an optimal compromise between the local t DirichleteigenvalueoftheAndersonHamiltonianΔ+ξandthedistancetotheorigin. Theprocessest (cid:4)→ Z andt (cid:4)→ 1logU(t)areshowntoconvergeindistributionunder t t suitable scaling of space and time. Aging results for Z , as well as for the solution t totheparabolicproblem,arealsoestablished.Theproofusesthecharacterizationof eigenvalue order statistics for Δ+ξ in large sets recently proved by the first two authors. MathematicsSubjectClassification 60H25·82B44 ©2017 MarekBiskup,WolfgangKönigandRenatoS.dosSantos.Reproduction,byanymeans,ofthe entirearticlefornon-commercialpurposesispermittedwithoutcharge. B MarekBiskup [email protected] 1 DepartmentofMathematics,UCLA,LosAngeles,CA,USA 2 CenterforTheoreticalStudy,CharlesUniversity,Prague,CzechRepublic 3 Weierstraß-InstitutfürAngewandteAnalysisundStochastik,Berlin,Germany 4 InstitutfürMathematik,TechnischeUniversitätBerlin,Berlin,Germany 123 M.Biskupetal. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Mainresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Results:Massconcentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Results:Scalinglimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Results:Aging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Results:Limitprofiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Connectionsandheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Relationstoearlierwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Someheuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mainresultsfromkeypropositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Definitionofthelocalizationprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Propertiesofthecostfunctional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Massdecompositionandnegligiblecontributions . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Proofofmassconcentrationresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Proofofagingandlimitprofiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Potentialsandeigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Islands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Connectivitypropertiesofthepotentialfield . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Spectralbounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pathexpansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Keypropositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Massofthesolutionalongexcursions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Equivalenceclassesofpaths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 ProofofPropositions6.1–6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Analysisofthecostfunctional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Apointprocessapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Orderstatistics:ProofofPropositions7.1and4.5andTheorem2.6 . . . . . . . . . . . . . . . 8 Massdecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1 Lowerboundforthetotalmass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Macroboxtruncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Negligiblecontributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4 UpperboundforthetotalmassandproofofTheorem2.5 . . . . . . . . . . . . . . . . . . . . 9 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Pathlocalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1 Fastapproachtothelocalizationcenter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 Localconcentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Localprofiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Contributionofu(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Contributionofu(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Appendix:Atailestimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Appendix:Compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Appendix:Propertiesofthecostfunctional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction RandomSchrödingeroperators—mostnotably,theAndersonHamiltonian H =Δ+ ξ—havebeenasubjectofintenseresearchoverseveraldecades.Mostoftheattention hasbeenpaidtothecharacterofthespectrumandtheensuingphysicalconsequences forthequantumevolution.However,theassociatedparabolicproblem—characterized 123 MassconcentrationandagingintheparabolicAnderson… bythePDE∂ u =Δu+ξu—isofasmuchinterestbothfortheoryandapplications. t Herewestudythelatterfacetofthisproblemforaspecificclassofrandompotentials. OurmainresultistheproofoflocalizationofthesolutiontotheabovePDEforlarge timeinaneighborhoodofaprocessdeterminedsolelybytherandompotential. A standard way to describe the parabolic Anderson model (PAM) is via a non- negativesolutionu: Zd ×[0,∞)→[0,∞)oftheCauchyproblem ∂ u(z,t)=Δu(z,t)+ξ(z)u(z,t), z ∈Zd, t ∈(0,∞), (1.1) t u(z,0)=1 (z), z ∈Zd. (1.2) 0 Hereξ =(ξ(z))z∈Zd isani.i.d.randompotentialtakingvaluesin[−∞,∞),1x isthe indicatorfunctionofapoint x ∈ Zd,∂ abbreviatesthederivativewithrespecttot, t andΔisthediscreteLaplacianactingon f : Zd →Ras (cid:3) (cid:4) (cid:5) Δf(z):= f(y)− f(z) , (1.3) y:|y−z|=1 where|·|denotesthe(cid:5)1normonZd. The interest in(1.1–1.2) for mathematics as wellas applications comes fromthe competingeffectofthetwotermsontheright-handsideof(1.1).Indeed,theLaplacian tendstomakethesolutionsmootherovertime,whilethefieldmakesitrougher.The problem(1.1)appearsinthestudiesofchemicalkinetics[13],hydrodynamics[8],and magneticphenomena[23].Werefertothereviews[8,19]formorebackground,and to[13]forthefundamentalmathematicalpropertiesofthemodel.Arecentcompre- hensivesurveyofmathematicalresultsonthePAMandrelatedmodelscanbefound in[15];therelatedspectralorder-statisticsquestionsarereviewedin[3]. A non-negative solution to the Cauchy problem (1.1–1.2) exists and is unique as soon as the upper tail of [ξ(0)/logξ(0)]d is integrable [13]. Under this condition, thereisalsoarepresentationintermsofthechanged-pathmeasure, (cid:6)(cid:7) (cid:8) 1 t Q(ξ)(dX):= exp ξ(X )ds P (dX), (1.4) t U(t) s 0 0 on nearest-neighbor paths X = (Xs)s≥0 on Zd, where P0 stands for the law of a continuous-time random walk on Zd (with generator Δ) started at zero. Indeed, the Feynman–Kacformulashows (cid:9) (cid:11) (cid:10) u(z,t)=U(t)Q(tξ)(Xt =z)=E0 e 0tξ(Xs)ds1{Xt=z} , (1.5) wherebythenormalizationconstantU(t)obtainsthemeaning (cid:12) (cid:7) (cid:13) (cid:3) t U(t)= u(x,t)=E exp ξ(X )ds . (1.6) 0 s x∈Zd 0 The aforementioned competitio(cid:10)n is now obvious probabilistically: the walk would liketomaximizethe“energy” tξ(X )ds,byspendingitstimeatthesiteswhereξ 0 s islarge,againstthe“entropy”ofsuchtrajectoriesunderthepathmeasureP . 0 123 M.Biskupetal. Analternativeandequallyusefulwaytoview(1.1)isasthedefinitionofasemigroup t (cid:4)→et(Δ+ξ)on(cid:5)2(Zd).Thesolutionto(1.1–1.2)isthengivenby (cid:14) (cid:15) u(x,t)= 1 ,et(Δ+ξ)1 . (1.7) x 0 (cid:5)2(Zd) Thisopensupthepossibilitytocontrolthelarge-t behaviorthroughspectralanalysis of the Anderson Hamiltonian. To this end, it is useful to restrict the problem to a sufficiently large (in t-dependent fashion) finite volume Λ ⊂ Zd (with 0 ∈ Λ) as follows.DenotebyHΛtheAndersonHamiltonianinΛwith(zero)Dirichletboundary conditions,i.e.,forφ ∈RΛ,HΛφ = Hφ˜whereH =Δ+ξandφ˜istheextensionofφ toRZd thatisequaltozeroonΛc.LetuΛbethesolutionto(1.1–1.2)restrictedtoΛ andwiththeright-handsideof(1.1)substitutedbyHΛu.Thentheaboveinterpretation yields (cid:3)|Λ| uΛ(x,t)= etλ(Λk)φΛ(k)(x)φΛ(k)(0), (1.8) k=1 whereλ(Λk) aretheeigenvaluesandφΛ(k) thecorrespondingeigenvectorsof HΛ,which weassumetobeorthonormalin(cid:5)2(Λ).Hereafter,weextendboththesolutionuΛ(·,t) andtheeigenfunctionsof HΛtoZd bysettingthemtobeequalto0onΛc. The competition we described in the context of the changed-path measure (1.4) nowmanifestsitselfasfollows.Theterminthesumin(1.8)thatgrowsthefastestint isthatwiththelargesteigenvalue.However,thereisnoapriorireasonforittobethe dominanttermatafixedtime.Indeed,aneigenvaluewillonlycontributeto(1.8)when itseigenvectorputsnon-trivialmassonboth0andx.Sincetheleadingeigenvectors decay exponentially away from their localization centers (Anderson localization), |φ(k)(0)|willinfactbetypicallyextremelysmall.Itisthusthecombinedeffectofboth Λ etλ(Λk) andφΛ(k)(x)φΛ(k)(0)thatdecideswhichindexk willgivethemaincontributionto thesum. In the present paper, we analyze these competing effects for a class of random potentialswithuppertailsclosetothedoubly-exponentialdistribution,characterized by (cid:16) (cid:17) (cid:18) (cid:19) Prob ξ(0)>r =exp −er/ρ , r ∈R, (1.9) whereρ ∈(0,∞).(PrecisedefinitionswillappearinSect.2.)Forthesepotentialswe showthat,atalllarget,mostofthetotalmassU(t)ofthesolutionresidesinabounded neighborhood of a random point Z determined entirely by ξ. This point marks the t optimal local peak of ξ for the strategy where the random walk in (1.4) traverses to Z intimeo(t),andthereafter“sticksaround” Z inordertoenjoythebenefitsofa t t “strong”localDirichleteigenvalue.Wealsocharacterizethescalinglimitsof Z and t 1logU(t),andobtainagingresultsforboth Z andu(x,t). t t OurresultsbuildonalargebodyofliteratureonthePAMwhosefullaccounthere woulddivertfromthemainmessageofthepaper.Fornowletusjustsaythatweextend resultsfrom[9,17,21,26],dealingwithlocalizationononelatticesite,toabenchmark classofrandompotentialsexemplifiedby(1.9),wherethelocalizationtakesplacein large domains, albeit not growing with t. An important technical input for us is the 123 MassconcentrationandagingintheparabolicAnderson… recentwork[7],whereeigenvalueorderstatisticsfortheAndersonHamiltonianH = Δ + ξ was characterized for this class of ξ. Further connections will be given in Sect.3.1. 2 Mainresults Wenowmovetothestatementsofourmainresults.Throughoutthepaper,lnxdenotes the natural logarithm of x, and ln x := lnlnx, ln x := lnlnlnx, etc denote its 2 3 iterates.Wewilluse“Prob”todenotetheprobabilitylawofthei.i.d.randomfieldξ. 2.1 Assumptions We begin by identifying the class of potentials that we will consider in the sequel. Besidessomeregularity,thefollowingensuresthattheuppertailsofξ(0)areinthe vicinityofthedoubly-exponentialdistribution(1.9). Assumption2.1 (Uppertails)Supposethatesssupξ(0)=∞andlet 1 F(r):=ln , r >essinfξ(0). (2.1) 2 Prob(ξ(0)>r) Weassumethat F isdifferentiableonitsdomainandthat 1 lim F(cid:8)(r)= forsome ρ ∈(0,∞). (2.2) r→∞ ρ Theassumptionabove isexactly asAssumption1.1in[7],and impliesAssump- tion (F) of [14]. While the latter would be enough for most of our needs, the extra requirements of Assumption 2.1 are used in the crucial step, performed in [7], of identifying the max-order class of the local principal eigenvalues of the Anderson Hamiltonian. In order to avoid technical inconveniences, we will also assume the followingconditiononthelowertailofξ. Assumption2.2 (Lowertails)Letξ−(x):=max{0,−ξ(x)}.Weassumethat (cid:7) ∞ (cid:16) (cid:17) Prob ξ−(0)>es d1ds <∞. (2.3) 0 Assumption2.2isonlyusedintheproofofLemma8.1,whichisusedinProposi- tion4.6togivealowerboundforthetotalmassU(t).Notethat(2.3)holdswhenever ln(1+ξ−(0))hasa(d+ε)-thfinitemoment(cf.[18]).Webelievethat,withtheuseof percolationarguments,thisassumptioncanberelaxedtoξ(0) > −∞almostsurely ind ≥2.Ind =1,(2.3)isequivalenttoln(1+ξ−(0))havingthefirstmoment,which isknowninthecaseofboundedpotentialstobe“essentiallynecessary”inthesense that,when|ln(1+ξ−(0))|δ isnotintegrableforsomeδ ∈ (0,1),thesolutionmight scaledifferently.See[6],inparticularRemarks3and4therein. 123 M.Biskupetal. WewillassumethevalidityofAssumptions2.1–2.2throughouttherestofthepaper withoutexplicitlystatingthisineachinstance. 2.2 Results:Massconcentration Recallthat|x|denotesthe(cid:5)1-normof x.Ourfirstresultconcernstheconcentration ofthetotalmassofthesolutiontotheCauchyproblem(1.1–1.2): Theorem2.3 (Mass concentration) There is a Zd-valued càdlàg stochastic process (Zt)t>0 dependingonlyonξ suchthatt (cid:4)→|Zt|isnon-decreasingandsuchthatthe followingholds:Foreachδ >0,thereexistsR ∈Nsuchthat,foranyl >0satisfying t limt→∞ 1tlt =0, ⎛ ⎞ lim Prob ⎝ sup (cid:3) u(x,s) >δ⎠=0. (2.4) t→∞ s∈[t−lt,t+lt] x: |x−Zt|>R U(s) Inwords,(2.4)meansthatthesolutionattimet iswithlargeprobabilityconcentrated nearasinglepointZ ,andthecontrolinfactextendstosublinearly-growingintervals t of time around t. This cannot be extended to linearly growing time-intervals due to the jumps of the process s (cid:4)→ Z (cf. Theorem 2.6 below), but a refinement of our s methodswouldshowthat,inthiscase,twoislandswouldsuffice,i.e.,(2.4)wouldstill holdifthesumistakenoverboxesofradius R centeredaroundtwoprocesses Z(1), s Z(2)[see(4.9)].Wealsobelievethatthealmost-sureversionofthisstatement,dubbed s asa“two-citiestheorem”andprovedin[16]forthecaseofParetopotentials,could beobtainedwithmoreworkbutprefernottopursuethishere. IntermsofthepathmeasureQ(ξ),Theorem2.3canbeinterpretedasconcentration t forthelawofthepositionofthepathattimet.Bylettingtheradius Rgrowslowlyto infinity,thiscanbeimprovedtoincludeamajorityoftherandomwalkpath: Theorem2.4 (Pathlocalization)Foranyεt ∈(0,1)withlimt→∞εtln3t =∞, (cid:24) (cid:25) lim Q(ξ) sup |X −Z |>ε lnt =0 inprobability, (2.5) t→∞ t s∈[εtt,t] s t t where(Zt)t>0 isthestochasticprocessinTheorem2.3. To the best of our knowledge, statements about path localization such as Theo- rem2.4werenotyetavailableintheliteratureoftheParabolicAndersonModel.The scalesabovecomeoutofourmethodsandmaybeartificial;inparticular,wedonot knowiflnt/ln3t isthecorrectscalingforsupεtt≤s≤t|Xs −Zt|. 2.3 Results:Scalinglimit Ournexttheoremidentifiesthelarge-t behaviorofthepairofprocessest (cid:4)→ Z and t t (cid:4)→ 1lnU(t).WhileU(t)iscontinuous, Z isonlycàdlàgandthusitisnaturalto t t 123 MassconcentrationandagingintheparabolicAnderson… usetheSkorohodtopologytodiscussdistributionalconvergence.Tworelevantscales are ρ td ρ t d := and r := t = , (2.6) t t dlnt ln t dlnt ln t 3 3 markingthesizeoffluctuationsof 1lnU(t),andthetypicalsizeof|Z |. t t Todescribethescalinglimit,considerasample{(λ ,z ): i ∈N}fromthePoisson i i pointprocessonR×Rd withintensitymeasuree−λdλ⊗dz.Forθ >0,define |z| ψθ(λ,z):=λ− , (λ,z)∈R×Rd. (2.7) θ Itcanbechecked that,foreveryθ > 0,theset{ψθ(λi,zi): i ∈ N}isbounded and locallyfinite.Moreover,themaximizingpointisuniqueatallbutatmostacountable setofθ’sandwecanthusdefine(Λθ,Zθ)tobethecàdlàgmaximizerofψθ overthe samplepointsoftheprocess(cf.Sect.7.2).Weset Ψθ :=ψθ(Λθ,Zθ). (2.8) Thenwehave: Theorem2.5 (Scalinglimitofthelocalizationprocessandthetotalmass)Thereisa non-decreasingscalefunctiona >0obeying t a lim t =ρ (2.9) t→∞ln2t suchthatthefollowingholds:Thestochasticprocess(Zt)t>0inTheorems2.3and2.4 canbechosensuchthat,foralls ∈(0,∞)andrelativetotheSkorohodtopologyon D([s,∞),R×Rd), (cid:24) (cid:25) θ1t lnU(dθtt)−art, Zrθtt θ∈[s,∞) t−→la→w∞ (cid:16)Ψθ,Zθ(cid:17)θ∈[s,∞). (2.10) Inparticular,foreachθ >0,thepair([θ1t lnU(θt)−art]/dt,Zθt/rt)convergesinlaw tothepair(Ψθ,Zθ)∈R×Rd whosecoordinatesareindependentanddistributedas follows:Ψθ followsaGumbeldistributionwithscale1andlocationdln(2θ),while Zθ has i.i.d. coordinates, each of which is Laplace-distributed with location 0 and scaleθ. Thescalingfunctiona characterizestheleading-orderscaleoftheprincipalDirich- t leteigenvalueoftheAndersonHamiltonianinaboxofradiust,asidentifiedin[7]. See(7.3)belowforaprecisedefinition. 123 M.Biskupetal. 2.4 Results:Aging Thetechniquesusedtoprovetheabovetheoremsalsopermitustoaddressthephe- nomenon of aging in the problem under consideration. The term “aging” usually referstothefactthatcertaindecisivechangesinthesystemoccurattimescalesthat increase proportionally to the age of the system. Our next result addresses aging in theprocess(Zt)t>0: Theorem2.6 (Aging for the localization process) For each s > 0, and for (Zt)t>0 and(Zt)t>0 asinTheorems2.3,2.4and2.5, (cid:16) (cid:17) (cid:16) (cid:17) tl→im∞Prob Zt+θt = Zt ∀θ ∈[0,s] =tl→im∞(cid:16)Prob Zt+st =(cid:17) Zt (2.11) =Prob Z1+s = Z1 =Prob(Θ >s), wheretherandomvariable Θ :=inf{θ >0: Z1+θ (cid:12)= Z1} (2.12) ispositiveandfinitealmostsurely.Moreover, sd dd lim Prob(Θ >s)= . (2.13) s→∞(logs)d d! InlightofTheorem2.5,Theorem2.6canbeseenasareflectionofthefactthatthe functionalconvergencestatedinTheorem2.5isnotachievedthroughalargenumber ofmicroscopicjumps,butratherthroughsporadicmacroscopicjumps. Oursecondagingresultdealswiththejumpsintheprofileofthenormalizedsolution u(·,t)/U(t).Itcomesasaconsequenceofthemassconcentrationofthenormalized solutionaround Z togetherwithTheorem2.6. t Theorem2.7 (Agingforthesolution)Foranyε ∈(0,1),therandomvariable ⎧ ⎫ 1t inf⎨⎩s >0: (cid:3) (cid:29)(cid:29)(cid:29)(cid:29)uU(x(,tt++ss)) − uU(x(,t)t)(cid:29)(cid:29)(cid:29)(cid:29)>ε⎬⎭ (2.14) x∈Zd convergesindistributionast →∞totherandomvariableΘ definedin(2.12). AkeypointtonoteaboutTheorem2.7isthatthelimitingrandomvariabledoesnot dependonε.Thissuggeststhat,infact,thesumin(2.14)jumpsfromvaluesnear0 tovaluesnear1ass variesinatimeintervalofsublinearlengthint. 2.5 Results:Limitprofiles ThelocalizationstatedinTheorem2.3canbegiveninamorepreciseformprovided thatwemakeanadditionaluniquenessassumption.Inordertostatethisassumption, 123 MassconcentrationandagingintheparabolicAnderson… weneedfurtherdefinitions.GivenapotentialV: Zd →R,let (cid:3) V(x) L(V):= e ρ . (2.15) x∈Zd ThefunctionalLplaystheroleofalargedeviationratefunctionforrandompotentialsξ withdoubly-exponentialtails.WheneverL(V)<∞(infact,wheneverV(x)→−∞ as|x|→∞),Δ+V hasacompactresolventasanoperatoron(cid:5)2(Zd),anditslargest eigenvalueλ(1)(V)iswell-definedandsimple.Theconstant (cid:18) (cid:19) χ =χ(ρ):=−sup λ(1)(V): V ∈RZd, L(V)≤1 ∈ [0,2d] (2.16) iskeyintheanalysisoftheasymptoticgrowthofU(t).Thesetofcenteredmaximizers ! " M∗ρ := V ∈RZd: 0∈argmax(V),L(V)≤1 and λ(1)(V)=−χ (2.17) isknowntobenon-empty.Theassumptionbelowdealswithuniqueness: Assumption2.8 (Uniqueness of maximizer) We assume that M∗ρ = {Vρ}, i.e., the variationalproblem(2.16)admitsauniquecenteredsolutionVρ. Theuniquenessofthecenteredminimizerisconjecturedtoholdforallρ >0,but hassofaronlybeenprovedforρ largeenough;see[11].Inthelatterpaperitisalso shownthat,foranyV ∈M∗ρ,thenon-negativeprincipaleigenfunctionoftheoperator Δ+V isstrictlypositiveandliesin(cid:5)1(Zd).UnderAssumption(2.8),wewilldenote henceforthbyvρ theprincipaleigenfunctionofΔ+Vρ,normalizedsothat vρ >0 and (cid:14)vρ(cid:14)(cid:5)1(Zd) =1. (2.18) Thenwehave: Theorem2.9 (Limiting profiles) Suppose Assumption 2.8 and let (Zt)t>0 be the process from Theorems 2.3, 2.4 and 2.5. There exist μ ∈ N and#a > 0 satisfy- t t inglimt→∞μt =∞andlimt→∞#at/(ρln2t)=1suchthat,forallε ∈(0,1), (cid:29) (cid:29) s∈[εstu,εp−1t] x∈Zds:u|px|≤μt(cid:29)ξ(x +Zs)−#at −Vρ(x)(cid:29) t−→→∞ 0 inprobability. (2.19) Moreover,foranylt >0satisfyinglimt→∞ 1tlt =0, (cid:29) (cid:29) sup (cid:3) (cid:29)(cid:29)(cid:29)u(Zt +x,s) −vρ(x)(cid:29)(cid:29)(cid:29) −→ 0 inprobability. (2.20) s∈[t−lt,t+lt]x∈Zd U(s) t→∞ Thescale#a in(2.19)coincides(uptotermsthatvanishast →∞)withthemaximum t ofξinsideaboxofradiust[see(5.1)forthedefinition,andalsoLemma5.1].Moreover, the scales at and#at (with at as in Theorem 2.5) satisfy limt→∞#at −at = χ. The 123 M.Biskupetal. scaleμ providedintheproofofTheorem2.9satisfiesμ (cid:15)(lnt)κforsomearbitrary t t κ <1/d,butitsactualrateofgrowthisnotcontrolledexplicitly. Therestofthepaperisorganizedasfollows.InSect.3belowwediscussconnec- tions to the literature and provide some heuristics. Section 4 contains an extensive overview of our proofs including the definition of the localization process Z . The t technicalcoreofthepaperisformedbySect.5(propertiesofthepotentialandspec- tral bounds), Sect. 6 (path expansions) and Sect. 7 (a point process approach). The bulkoftheproofsrelatedtoourmainresultsiscarriedoutinSects.8–11,concern- ingrespectivelynegligiblecontributionstotheFeynman–Kacformula,localizationof relevanteigenfunctions,pathlocalizationpropertiesandtheanalysisoflocalprofiles. TheproofsofsometechnicalresultsaregiveninAppendices12–14. 3 Connectionsandheuristics Inthissection,wemakeconnectionstoearlierworkonthisproblem,andalsoprovide ashortheuristicargumentmotivatingthedefinitionofthescalesin(2.6). 3.1 Relationstoearlierwork Letusgiveaquicksurveyonearlierworksontheparticularquestionthatweconsider; wereferto[15]foracomprehensiveaccountontheparabolicAndersonmodel,and to[20]forasurveyoncertainaspectscloselyrelatedtothepresentpaper. Since1990,muchoftheeffortwentintodevelopingacharacterizationofthelog- arithmicasymptotics oft (cid:4)→ U(t)anditsmoments,whichareallfiniteifandonly ifallthepositiveexponentialmomentsofξ(0)arefinite.Forthiscase,underamild regularityassumption,[27]identifiedfouruniversalityclassesofasymptoticbehav- iors: potentials with tails heavier than (1.9) (corresponding formally to ρ = ∞), double-exponentialtailsoftheform(1.9),theso-called“almostbounded”potentials (correspondingformallytoρ =0),andboundedpotentials.Thefirsttwocaseswere treatedin[14],andthelasttwoin[27]and[5],respectively.Potentialswithinfinite exponentialmomentswereanalysedin[28](moreprecisely,ParetoandWeibulltails), whereweaklimitsandalmostsureasymptoticsforU(t)wereobtained. Inalloftheclassesmentionedabove,theasymptoticsofU(t)isexpressedinterms of a variational principle for the local time of the path in Q(ξ) and/or the “profile” t of ξ that maximizes a local eigenvalue. The picture that emerges is that a typical path sampled from Q(ξ) for t large will spend an overwhelming majority of time in t a relatively small volume whose location is characterized by a favourable value of thelocalDirichleteigenvalue.Proofsofsuchstatementshavefirstbeenavailablefor a related version of the model using the method of enlargement of obstacles [25] andlateralsoforthedouble-exponentialclassbyprobabilisticpathexpansions[12]. However, neither of these approaches was sharp enough to distinguish among the many “favourable eigenvalues.” In fact, while the expectation was that only a finite numberofsucheigenvaluesneedstobeconsidered,thebestavailableboundontheir numberwasto(1). 123

Description:
doubly-exponential upper tails. We prove that, for large t and with large probability, most of the total mass U(t) := ∑ x u(x, t) of the solution resides in a bounded neighborhood of a site Zt that achieves an optimal compromise between the local. Dirichlet eigenvalue of the Anderson Hamiltonian
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.