ACTAASTRONOMICA Vol.55(2005)pp.1–16 Massandradius determination forthe neutron starinX-ray burst source 4U/MXB1728-34 6 0 by 0 2 A.Majczyna and J.Madej n WarsawUniversityObservatory,Al. Ujazdowskie4,00-478Warsaw,Poland a J email: [email protected] 4 1 v Abstract 6 7 We analyzed archival X-ray spectra of MXB 1728-34obtained in 1996-99by 0 theProportionalCounterArrayonboardoftheRXTEsatellite. X-rayspectrawere 1 fitted to our extensive grids of model atmosphere spectra to determine the effec- 0 tivetemperature T ontheneutronstarsurface,logarithmofsurfacegravity logg, eff 6 andthegravitationalredshift z simultaneously. Wehavechosenfittingbynumeri- 0 / calmodelspectraplusbroadGaussianline,modifiedbyinterstellarabsorptionand h the absorption on dust. We arbitrarily assumed either hydrogen-heliumchemical p compositionofa modelatmosphere,orH-He-Femixtureinsolarproportion. The - o statistically bestvaluesof logg, and z subsequentlywereusedto determinemass r andradiusoftheneutronstar. Weobtainedthebestvaluesoftheparametersforthe t as neutronstarinX-rayburstsourceMXB1728-34:masseither M=0.40 or 0.63M⊙ : (forH-HeorH-He-Femodels,respectively),radiusR=4.6 or5.3km, logg=14.6 v or 14.6 andthegravitationalredshift z=0.14 or 0.22. Allthe aboveparameters i X haveverywide 1-s confidencelimits. Their valuesstronglysupportthe equation r ofstateforstrangematterinMXB1728-34. a KeywordsStars: fundamentalparameters–stars: neutron–X-rays: bursts– stars: individual(MXB1728-34) 1. Introduction X-ray source MXB 1728-34 was discovered in 1976 by Forman, Tananbaum &Jones(1976)inthesurveyobservationsoftheUhurusatellite. TypeIX-raybursts fromthis sourcewere identifiedin the same year byLewin, Clark & Doty (1976) inSAS-3satellitedata. Opticalcounterpartstillremainsunidentifiedprobablydue to large extinction in the direction to this source. Recently Martí et al. (1998) hasidentifiedaninfraredcounterparttoMXB1728-34,buttheconnectionwiththe X-ray source has not yet been confirmed. MXB 1728-34was observedin a wide energyrangefromradio(Martíetal. 1998)to g -rayenergies(cf.Claretetal.1994). Thedeterminationofmassandradiusofaneutronstarsisaveryimportantand interestingproblem,becauseitallowsonetodetermineortoconstraintheequation 2 A.A. of state of superdense matter. Distance to the source is also necessary to localize thesourcerelativelytotheGalacticcenter. ForMXB1728-34thefirstestimateof its distance d and true radius R was given by van Paradijs (1978), d =4.2±0.2 kpc and R=6.5±0.4 km (see also Foster et al. 1986). Both parameters were estimatedassumingthatthepeakfluxofagivenburstfromthissourceapproached theEddingtonlimitingflux. Itbecameimmediatelyclearthatsucharadius R was smallerthantheminimumradiusexpectedforaneutronstarofthecanonicalmass of 1.4M⊙. MXB 1728-34was frequentlyobservedin X-raysafter that year, and parame- ters of the neutron star were estimated in several papers. Kaminker et al. (1989) interpretedspectraofthissourceusingsimplifiedemissionmodels. Theyhavede- rivedthefollowingvaluesoftheneutronstarparameters: mass M=1.4−2.0M⊙ and radius R=6.5−12 km assuming the distance d =6 kpc and pure helium atmosphere. DiSalvoetal. (2000)andGallowayetal. (2003)alsoassumed,thatluminous bursts from this source are standard candles of the bolometric luminosity at the Eddington limit. They concluded that the distance to this X-ray burster is in the range4.4–5.1kpc. Ontheotherhand,Shaposhnikovetal. (2003)obtainedothervalues: d=4.5− 5.0 kpc, M=1.2−1.6M⊙, and R=8.7−9.7 km. Theyalsoconcluded,thatthe heliummassabundanceY>0.9inatmosphereoftheneutronstarinMXB1728-34. TheseauthorsusedsemianalyticalmodelsofexpandingatmospheresbyTitarchuk (1994),andTitarchuk&Shaposhnikov(2002). A differentapproachto this problemwas used by Li et al. (1999), who inter- pretedpowerspectraoftheX-raylightcurveandcomparedthemtothemodelby Osherovich&Titarchuk(1999)andTitarchuk&Osherovich(1999). Astheresult Lietal. (1999)constrainedtheareaonthe(M, R)plane,wheretheneutronstarof MXB1728-34islocated.ConstrainedlocalizationofMXB1728-34wascharacter- isticforastarbuiltupofstrangematter. We present here for the first time the estimation of mass and radius of MXB 1728-34, obtainedby fitting of archivalRXTE X-ray spectra of this source to the newextensivegridsofmodelatmospheresandtheoreticalspectraofneutronstars. This technique also allowed us to obtain the upper limit of the distance to MXB 1728-34. Theoreticalmodel spectra were obtained with the ATM21 code, which computes model atmospheres of hot neutron stars with the account of Compton scatteringonfreeelectrons. Thecodetakesintoaccountangle-averagedCompton scatteringofX-rayphotonswithinitialenergiesapproachingtheelectronrestmass. Detailed description of the equations and numerical methods were given in a longseriesofearlierpapers(Madej1991a,b;Joss&Madej2001;Majczynaetal. 2002;Madej,Joss&Róz˙an´ska2004;Majczynaetal. 2005). Vol.55 3 2. Modelatmospheresandtheoretical spectra Model atmospheres used in this paper are based on the equation of radiative transferofthefollowingform µ¶ Inr¶(z,zµ) =k ′n (1−e−hn /kT)(Bn −In ) (1) ¥ c2 dw ′ n + (cid:18)1+2hn 3In (cid:19)I 4p Z n ′s (n ′→n ,~n′·~n)In ′(z,~n′)dn ′ w ′ 0 ¥ dw ′ c2 − In (z,µ)I 4p Z s (n →n ′,~n·~n′)(1+2hn ′3In ′)dn ′, w ′ 0 which defines a very elaborate source function Sn of our models (Madej 1991a). ThesignificanceofsymbolsinEq. 1iscommonlyknownandwillnotberepeated here. We stress here, that ourtheoreticalmodelsuse sophisticated Comptonscatter- ingcross-sections s (n →n ′,~n·~n′), whichallowforalargephotonenergychange at the time of a single scattering off electrons with a relativistic thermal velocity distribution (Guilbert 1981). Frequently used Kompaneets approximationwas re- jectedinourcalculationsinordertoobtainhighnumericalaccuracyoftheoretical ComptonisedX-rayspectra. The actual code is able to compute modelatmospheresand theoreticalX-rays spectraofveryhotneutronstars,takingalsointoaccountnumerousbound-freeand free-free monochromatic opacities of various elements, and the equation of state of idealgas. The codeis “exact”in thatit solvesthe equationof transfercoupled with the equation of radiative equilibrium using partial linearisation and variable Eddingtonfactorstechnique(Mihalas1978). Wecalculated3extensivegridsofmodelatmospheresofhotneutronstarscor- respondingtovariousarbitrarilyassumedchemicalcompositions. – Hydrogen-heliummixturewithsolarheliumnumberabundance, N /N = He H 0.11 (223models), – Hydrogen-helium-ironmixturewith N /N =0.11 and solar iron number He H abundance, N /N =3.7×10−5 (228models), Fe H – Hydrogen-helium-ironmixture with N /N =0.11 and 100 × solar iron He H numberabundance, N /N =3.7×10−3 (229models). Fe H Computedmodelscovertherangeof 1×107≤T ≤3×107 Kwithstepof 106 eff K, and the rangeof surface gravity 15.0≥logg≥logg (cgs units)with step of cr 0.1. Hereweintroducedthecriticalgravity g ,forwhichaccelerationexertedby cr theradiationpressuregradientanddirectedoutwardjustbalancesgravity. Finally, we transformed numerical ASCII models to FITS format required by the XSPEC package. Propertiesofneutronstartheoreticalspectrawereextensivelydiscussede.g. in Majczyna et al. (2005), see also earlier theoretical papers of this series. As an example,Fig.1presentsamodelspectrumwithparameterssimilartotheseofMXB 1728-34, see Section 6 (solid line). The relevant effective temperature equals to 4 A.A. T eff = 2.3e+07 K 7 log g = 14.5 BB 6.5 6 H-He-Fe mixture solar abundance of He and Fe 5.5 0 0.5 1 log energy (keV) Figure 1: Comparison of the neutron star theoretical spectrum (solid line) and the blackbody spectrum(dashedline). Sampleeffectivetemperature T ,surfacegravity logg andchemicalcom- eff positioncorrespond toone of thebest fits. TheBB spectrum inthisFigurewascomputed for the temperature T . eff T =2.3×107 K,surfacegravity logg=14.5 (cgs),andchemicalcompositionis eff H-He-Fe of solar proportions. Fig.1 includesalso properlynormalizedblackbody spectrum of the temperature T =T =2.3×107 K. Spectrumof blackbodywas eff routinelyusedinmanyearlierpapersfortheroughrepresentationofanX-rayburst spectrum. Fig. 1demonstratesbasicpropertiesofourmodelspectrum. First, thelatteris shifted to higherenergiesas comparedwith the blackbody. Sucha shiftis typical forscatteringatmospheres(Madej1974)andcausesthattheratioofcolortoeffec- tive temperatures, T /T >1. Second, one can note that the shape of precisely col eff computedspectrumisdifferentthantheblackbodyandexhibitslowenergyexcess andseveralspectrallines. InthisFigurespectrallinesarecausedbyhydrogeniciron andappearinemission. Boththespecificshapeofanexactspectrumanditsshifttowardhigherenergy dependon T , logg and also the redshift z. Therefore, these parameterscan be eff determinedbycomparingoftheoreticalandobservedRXTEspectra. WhileRXTE spectralresolutiondoesnotallowtoresolvemostofspectrallines,theycontribute totheoreticalcountsinchannelsofRXTEproportionalcounters. Vol.55 5 3. Observationsanddataanalysis X-ray burster MXB 1728-34was observed by the RXTE satellite many times at the time period 1996-1999. In our paper we have reanalyzed archival RXTE spectralobservationstakenfromtheHEASARCdatabase,numbered10073-01-02- 00, 10073-01-03-000,20083-01-01-01,20083-01-02-01,20083-01-04-00,20083- 01-04-01. We haveselected spectraobtainedbythe PCA instrument, since itwas sensitivein the energyband2-60keV, andhavechosendata fromthe toplayerof detectors Pcu0, 1, 2. The above spectra correspond to the quiescent phase of the burster. Standard-2configurationwasusedtoanalyzethespectra. Thistypeofconfigu- rationhasaverygoodenergyresolution,however,ithaspoortimeresolution. We integratedrawspectraover96secondintervals,takingshorterspectrabinnedto16- secatthetimeoftheirextraction.Weselectedspectraofthissourceoutsidebursts, because wanted to avoid possible phases of radius expansion of the neutron star (NS), andrapid changesof its luminosity. We did notincludecorrectionfor dead time. Inourcase,countratewasnotlargeandneglectingthiscorrectiongenerated errorlowerthan1%. Duringpreparationof an observedspectrum forfitting we neglectedcountsin channelsbelow3.0keV,sinceonecanexpectpoorenergyresolutioninlowenergy channelsandtoostrongimpactofinterstellarabsorption. Dataabove20keVwere ignoredduetopoorstatisticsofcounts. Weextensivelyusedthepubliclyavailable softwareXSPECv. 11.1andtheresponsematrixv. 10.1. TheXSPECsoftwarewas describedinArnaud(1996). Claretet al. (1994)havediscovereda hardenergyexcessofthissourcein the 30–200keV energy band with the SIGMA telescope on board GRANAT satelite. AuthorsfittedhardX-rayspectrumofMXB1728-34byathermalbremsstrahlung modelwithaveryhighelectrontemperatureof38keV=4.4 ×108 K.Authorsdid notexplainwhatistheoriginofthisextremelyhotmedium. Theexistenceofvery hotelectronstherewasnotconfirmedatalatertime. RXTEobservedthesourceMXB1728-34foraverylongaccumulatedtimepe- riod, andthereforerecordedmanyhardX-rayphotons. As was written above,we integratedour spectra over relatively short time period. For such integrationtime hardpartofthespectrumisveryweak. Forexample,inourtemplatespectrumde- scribedbythenumber24000themaximumoffluxexhibitsabout160counts/s/keV, andabove20keVfluxdropsbelow2counts/s/keV.Forsuchalowfluxitisimpossi- bletoobtainasignaltonoiseratiowhichisusefulforfittingofanyemissionmodels. We also didnotattemptto fithardX-raypartof the spectrumsince ourmodelat- mospheresaredarkabove20keV.Therefore,analyzingofhardX-rayspectrumfor MXB1728-34withourmodelspectrawouldnotyieldanyinformationsregarding T , logg andtheredshift z. eff Characteristic features of our spectra are: line-like absorption feature around 4.5 keV and flux excess around6.5 keV. We note the existence of such an excess in each analyzed spectrum but sometimes this feature is notprominent. Line-like featureappearsinsomeofspectra,butsometimesitdecreasestotheapparentnoise level. Interpretationofthisfeatureisnotclear,andfittingamodelgaussianlineof centralenergy4.5keVdonotimprovethefit. Thereforewedonotattempttomodel thisline. Whatisimportant,thelineappearsonlywhenweusetheresponsematrix 6 A.A. version1996,andinlaterversionsoftheresponsematrixthisproblemwassolved. ThislinecanbeinterpretedastheinstrumentalxenonL–edgeline. Situationis quitedifferentincase ofthe fluxexcessaround6.5keV.Approxi- matingof thisexcessas a broadgaussianline seems necessary. PCA data did not allowusforthephysicallymeaningfulinterpretationofthis“line”.Alsodetermina- tionofthecentroidenergycorrespondingtothislineisimpossibleusingthefitting procedure. In case of spectra recorded by other instruments like MECS on board BeppoSAXsatellite such a flux excesswas interpretedas the fluorescentironline producedincolddiskilluminatedbyhardX-rayphotons(seeDiSalvoetal. 2000). OurmodelatmospheredonotincludeprocesseswhichproducedFeKa line,andwe appendedthisline“byhand”usingtheXSPECmodelofagaussianline. Figure 2: SamplefitoftheMXB1728-34spectrumof96-seclength, ObsID10073-01-03-000. Wehavefittedwabs*plabs(ATM+gaussian)templatespectra.Fitisreasonable(c 2=0.812),andthe lowerpanelexhibitsresidua. IfwerestrictedouranalysisandusedthestandardtemplatespectraoftheXSPEC software, than the best fits consist of a blackbody spectrum plus power law com- ponentwith high energy cutoff modified by interstellar absorptionof cold matter. Moreover,if we includedmulticolordisk blackbodymodelthenthe bestfityields unrealistichightemperaturesinthe innerringofthediskequalto2.8keV. There- fore, we replacedthe abovemodelbythe emission fromthecomptonisedneutron star atmosphere, corrected for low energy absorption and a gaussian line. In our solution emission from the accretion disk is assumed as negligibly small. X-ray burster MXB 1728-34 exhibits frequentbursts, with average time intervals of 8.4 hours (Basinska et al. 1984). Therefore, its atmosphere does not cool down ef- Vol.55 7 ficiently between bursts and then X-rays from the colder disk do not contribute significantly. Weperformedfittingof18spectrafromtheRXTEarchiveusingextensivegrids of theoretical spectra computed by the code ATM21, The code was described in detail e.g. in Madej (1991a); Madej, Joss & Róz˙an´ska (2004); Majczyna et al. (2005),seealsothepreviousSection. In order to determine the effective temperature, redshift and surface gravity of the neutron star we fitted observed spectra of MXB 1728-34 with the model wabs*plabs(ATM21+gaussian). Suchafittingformuladenotethesumofourthe- oreticalspectrumplusgaussianlinemodifiedbyinterstellarabsorptionandabsorp- tion caused by dust. Addition of absorption on dust is reasonable, because this bursterislocatedinthedirectiontotheGalacticCenter,wheresuchtypeofextinc- tionisveryhigh. 4. Calculationsofmassandradius Massandradiusoftheneutronstarwasdeterminedfromthevaluesofsurface gravity logg and gravitationalredshift z. The effective temperature T was not eff usefulatthisstep. Gravitationalredshiftisgivenby: 2GM −1/2 1+z= 1− (2) (cid:18) Rc2 (cid:19) where G is thegravitationalconstant, M is theneutronstar mass, R isthe radius measuredontheNSsurface, c denotesthespeedoflight.Gravitationalacceleration ontheNSsurfaceequalsto: GM 2GM −1/2 g= 1− (3) R2 (cid:18) Rc2 (cid:19) WesolveEqs. 1-2formass M andradius R,andobtaintheexplicitexpressions: zc2 (2+z) R= (4) 2g (1+z) z2c4 (2+z)2 M= (5) 4gG (1+z)3 Bothmassandradiusofaneutronstararefunctionsonlyofthesurfacegravityg andthegravitationalredshift z. Theeffectivetemperature T (whichisequivalent eff to the bolometric luminosity of an unit area on the NS surface) does not directly influenceneither M nor R. Moreover,ourmethodof M and R determinationforaneutronstarexhibitstwo interestingproperties: 1. Valuesofbothmassandradiusareindependentonthedistancetothesource. We also do not need to estimate and compare both the bolometric and apparent X-rayluminositiesofaneutronstartoobtain M and R. 2.BothmassandradiusofaNSdonotdependontheestimateofthedimension- lessparameter x ,whichisdefinedastherelativeareaoftheNSstarsurfaceactually emittingX-rays. Ourmethodallowsonetomeasure M and R alsoincases,when onlypartofthesurface(ofunknownvalue x )isvisibleinX-rays. 8 A.A. 4.1. Theminimummassofaneutron star For the proper determination of surface gravities and gravitational redshifts it is necessary to estimate physically reliable minimum mass for neutron stars (see Section 6). We turn attention of the reader to the paper by Haensel et al. (2002), who investigatedthe equationof state for dense matter and the minimummass of neutronstars. Haenseletal. (2002)predictedthatminimummassesofcoldnonrotatingneu- tron stars are of the order Mmin ≈0.09M⊙, and this value depends very weakly on the equation of state. If a neutron star rotates, than the minimum mass M min increases. Haensel et al. (2002) present the example that in the case of the most rapidly rotating radio pulsar (P =1.56 ms or frequency 641 Hz) the minimum rot massofuniformlyrotatingcoldneutronstarisintherange 0.54−0.61M⊙ depend- ingontheexactequationofstate. ConstrainingofaNSmasswasnecessarytoeliminatemanyofthefitswhichwe deemasphysicallyunrealistic, sincetheycouldimplylowNSmassesevenbelow M . Ifthisconstraintwasnotintroduced,thentheaveragedNSmassesinMXB min 1728-34wouldlowerthantheseclaimedinSection7ofourpaper. 5. Fittingprocedure Wehavechosentotalof18spectrafrom6differentexposuresofRXTE,which correspondeithertotheislandorbananastates. Weproceededinthefollowingway. ForeachmodelatmosphereofagiveneffectivetemperatureT (ontheNSsurface), eff logarithm of surface gravity logg, and some trial chemical composition (see the listingin Sec. 2), we havefixedparametersoftheline: centralenergy E =6.2 line keV, and the width s =1.2 keV. Redshift z was also fixed at some value in the range0.00–0.60. Atthetimeoffittingweiteratedthefollowingfreeparameters: hydrogencolumndensity,twoparametersoftheplabsmodel,normalizationofthe ATM21model,andthenormalizationoftheline(total5freeparameters). We iterated the above five free parametersuntil the minimum of c 2 has been achieved. Sucha procedurewas repeatedfor all othercombinationsof T , logg eff and z,andforallthreeavailablechemicalcomposition. Trialvaluesofthegravita- tionalredshift z werechangedfrom0.00to0.60withstepsof0.01. The actual fitting was restricted to the effective temperatures T in the range eff from 1×107 Kto 3×107 K,changingwithstepof 106 K.Insuchawaywehave obtainedthetableofmorethan21000valuesof c 2,eachofthemcorrespondingto theuniquesetofthethreefixedparameters: T , logg,and z,foragivenchemical eff composition. Then, we searchedforthe minimumof c 2 in the three-dimensional space. Inspectionofthetableof c 2 showed,thatthebestfittedmodelswithironabun- dance 100 times greater than the solar value produced significantly higher c 2 at numerous minima, than those obtained for hydrogen-heliummodels. We believe thatironrichmodelsdonotrepresentrelevantchemicalcompositionoftheneutron starsurfaceinquiescentstateofMXB1728-34. Therefore,fitstoironrichmodels willneitherbepresentednordiscussedinsubsequentSections. Note,thatinthecaseofablackbodyspectrumonecandetermineonlythequan- tity (1+z)T ,andthevalueof logg remainsunknown. Separationof T and z, eff eff Vol.55 9 andthedeterminationof logg ispossibleonlybecauseshapesofrealstellarspec- tra deviate from a blackbody. This is sometimes a marginal effect, therefore, the redshiftandthesurfacegravitydeterminationscanbeuncertain. 6. Redshiftandsurfacegravitydetermination Asiswellknown,fittingoftheobservedX-rayspectrawiththeXSPECsoftware usuallydonotproduceuniqueresults.Inthisresearchwedidnotobtainauniqueset of T , logg andz,whichwouldhaveavalueof c 2 distinctlylowerthanremaining eff fits. Instead,wealwaysobtainednumeroussetsoftheabovefittingparameterswith c 2 veryclosetotheminimumvalue. Foragivenchemicalcompositionwehaveselectedthesetof T , logg and z eff from thousands of fits which correspondsto the minimum value, c 2 . We have min appendedothersetswith c 2 intherange [c 2 ,c 2 +D ],where D representsthe min min 1 1 increaseof c 2 smallenoughtobeinthe1-sigmaconfidencerange. Sizes of various confidence ranges were estimated by Avni (1976), Lampton, Margon&Bowyer(1976)andPressetal. (1996). Theoreticalmodelsfittedinthis research have 5 free parameters and, typically, 38 degrees of freedom (38 d.o.f.). We applied here values for Dc 2 taken from Press et al. (1996), page 692, which givein ourcase D =5.89/38d.o.f.=0.16. Such a value of D was used in the 1 1 followingstagesofourresearch. Foreachoftheanalyzed96secX-rayspectrumforMXB1728-34weobtained usuallyfewhundredsetsof T , logg and z whichbelongtothe [c 2 ,c 2 +D ] eff min min 1 range. Shapeoftheconfidencelevelsindicatethattheseparametersarenotcorrelated, seeFig. 3. Weautomaticallycomputedmass M andradius R fromEqs. 4–5andrejected allsetsofparameterswhere M<0.1M⊙. Insuchawaythenumberofacceptable fits was significantly reduced in order to secure physical reliability of fits used in furtherconsiderations. Table1: Thebestvaluesand1-s confidence rangesfor logg and z H-He H-He-Fe z 0.14 0.22 best 0.06-0.21 0.06-0.41 logg 14.6 14.6 best 14.2-14.9 14.2-14.9 Our determinationsof the surface gravitationalredshiftcan be comparedwith the value of z=0.35 given by Cottam et al. (2002) for other neutron star, EXO 0748-676. Ourdeterminationsofthesurfacegravity logg fortheneutronstarMXB1728- 34areinagreementwiththeoreticalconsiderationsbyBejgerandHaensel(2004). Both authors determined, that the maximum value of the surface gravity logg= 10 A.A. Figure3: 1,2,and3-sigmaconfidence levelforthefitofthemodelwithsolariron abundance. Hereweassumethat MNS≥0.1M⊙. 14.87 foraneutronstarbuildupofnormal(hadronic)matter,and logg=14.78 for astrangestar. 7. Massandradiusdetermination ThisSectionpresentsthefinalresultsofouranalysisforbothassumedchemical compositions. Ourresultsare explainedin detailin Tables2 and3. Eachrow ofbothTables presentsdetailed analysis for each of the 96 sec spectra taken into accountin this paper. ColumnsofbothTablesgive: identificationoftheobservation,nameofthe spectrum,therangeof logg and z whicharelocatedinthe1-s confidencerange, andtheminimum c 2. Thelasttwocolumnspresentthefinalresults: rangesofthe NSmassesandradiicorrespondingtothe1-s confidencerange. Inordertoproperlyweighttheaveraged1-s limitsofinvestigatedparameters, wehavecomputedthearithmeticaveragesofthelowerandupperlimitsfor logg, z, M and R inTables2and3.ResultsalsoaredisplayedinTables1and4andthey representthebestvaluesofparametersforthecompactstarinMXB1728-34. Theaveragedvaluesof M, R andtheir1-s confidencerangesarepresentedin Table4. As is evident, both mass and radius of the neutron star in MXB 1728-34 are verylowascomparedwithcanonicalvalues. ThisistrueforbothH-HeandH-He- Fe chemicalcompositionsof a neutronstar atmosphere. In anyevent, our M and