ebook img

Martino, Jole (2013) Metabolic alterations induced by high maternal BMI and gestational diabetes ... PDF

331 Pages·2017·7.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Martino, Jole (2013) Metabolic alterations induced by high maternal BMI and gestational diabetes ...

Metabolic alterations induced by high maternal BMI and gestational diabetes in maternal, placental and neonatal outcomes by Jole Martino B.Sc., M.Sc. Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy December 2013 i Abstract Maternal obesity and diabetes increase the risk of delivering large for gestational age infants (LGA), who have higher risk of long term obesity or metabolic syndrome [1]. As the underpinning mechanisms of how fetal growth is regulated by the placenta remain unclear [2], this thesis has investigated placental responses to high maternal BMI and gestational diabetes. Spanish pregnant women recruited at 20 gestational weeks were classified according to pre-pregnancy BMI as control (BMI<25kg/m2; n=59), overweight (BMI=25-30kg/m2; n=29) or obese (BMI>30kg/m2; n=22), and gestational diabetes status (GDM) classified at 28 weeks. Maternal anthropometry and gestational weight gain (GWG) were measured during pregnancy. Placenta, cord blood, newborn antrophometry and infant weight were sampled or measured. Expression of genes involved in placental energy sensing pathways, folate transporters and DNA methylation was determined using real-time PCR, and placental triglyceride concentrations, lipid peroxidation and genomic DNA methylation patterns measured. Data were analysed according to their parametric distribution by Kruskal-Wallis or 1-way ANOVA. Despite lower GWG, a greater proportion of obese women exceeded recommended weight gain [3], had higher placental weight and increased numbers of LGA infants. Maternal hyperinsulinaemia and hyperglycaemia with obesity were accompanied by unchanged placental IGFR1 and ISR1 expression, similar cord blood glucose and triglyceride concentrations. Placental mTOR was halved with obesity, whilst SIRT1 and UCP2 gene expression were 1.8 and 1.6 fold upregulated respectively with no differences in TBARS concentrations. Hyperleptinaemia in obese women resulted in unchanged placental leptin and leptin receptor expression, but higher cord blood leptin and monocyte concentrations with placental hypermethylation of genes involved in the immune response. Lower folate concentrations in obese mothers led to similar cord blood folate, and decreased placental FRα, but raised DNMT1, mRNA expression. No major differences were observed with GDM, probably due to small sample size. In conclusion, it appears that the placenta can protect the fetus of obese women by increasing antioxidant capacity, compensating for maternal hyperglycaemia and lower folate. However, maternal obesity was associated with enhanced cord blood leptin and monocyte concentrations, increased placental weight and more LGA delivery, leaving infants at ongoing risk of increased adiposity and inflammation. Therefore, ongoing studies are currently exploring these interacting aspects. i Acknowledgements Firstly, I would like to thank my funding organisations, Abbott Laboratories for funding the sample collection in Granada, the Nottingham Respiratory Biomedical Research Unit, the Nottingham University Hospitals Charity and the Rowett Research Institute for funding my PhD in Nottingham. I am grateful to Dr Cristina Campoy for giving me the opportunity to take part in this project and further investigations in Nottingham. My sincerest thanks go to Professor Michael Symonds and Dr Helen Budge for providing excellent supervision and direction throughout this period, enabling me to interpret my research within a professional and clinical setting. Special thanks go to Professor Harry McArdle for his advice and scientific support. I am sincerely thankful to Sylvain Sebert for his directions during the first part of my PhD, and for his friendship and genuine dedication to science. I really appreciated the support and friendship of all the staff within the Clinical Hospital in Granada, who shared with me the Preobe experience, and the Academic Division of Child Health in Nottingham. Special thanks go to Dr Andrew Prayle for being always helpful with my statistical enquiries, and to Vicky Wilson and Mark Pope for their excellent technical support and expertise. I am truly grateful to Dr Ian Bloor, Dr Shalini Ojha, Dr Neele Dellschaft, Stuart Astbury and Dr Mathias Droescher for their support to reach the end of this thesis. I would like to thank all my friends in Nottingham, especially Dr Marta Larraona, Marta Cigna, Angeles Muñoz and Bruno Rodriguez, for their friendship and moral support both on the good and hard days. Finally, sincere thanks go to my family for their continuous encouragement and for being always there. ii Table of Contents Abstract...............................................................................................i Acknowledgements.............................................................................ii Table of Contents...............................................................................iii Declaration....................................................................................... vii Abbreviations .................................................................................. viii List of Figures....................................................................................xi List of Tables ................................................................................... xvi List of Equations.............................................................................. xxi Chapter 1 - Introduction...............................................................1 1.1. General study overview.......................................................2 1.2. Early life programming........................................................3 1.3. The obesity pandemic..........................................................5 1.4. Obesity in pregnancy...........................................................6 1.4.1. Maternal diet and nutrient intake...........................................8 1.4.2. Maternal weight gain ...........................................................9 1.5. Gestational diabetes mellitus............................................11 1.6. Metabolic alterations with obesity and diabetes................13 1.7. Insulin signalling in obese and GDM pregnancies..............15 1.8. Regulation of human fetal growth.....................................17 1.8.1. Maternal metabolic changes in pregnancy..............................18 1.8.2. The placenta: the programming agent ..................................21 1.8.3. Placental blood flow and vascular development......................23 1.8.4. Placental size and morphology.............................................26 1.8.5. Placental nutrient transport .................................................28 1.8.6. Placental hormonal regulation..............................................34 1.9. Placental metabolic regulation..........................................42 1.9.1. Placental insulin signalling...................................................42 1.9.2. Placental nutrient sensing....................................................44 1.9.3. Placental inflammation........................................................45 1.9.4. Placental oxidative stress ....................................................47 1.9.5. Folate metabolism and placental transport.............................50 1.10. Epigenetics and imprinted genes.......................................55 1.11. Hypothesis and Aims:........................................................59 Chapter 2 - General materials and methods................................61 2.1. Ethical Approval ................................................................62 iii 2.2. Participants.......................................................................62 2.2.1. Pre-pregnancy BMI classification..........................................65 2.2.2. Gestational diabetes mellitus...............................................67 2.3. Maternal questionnaires....................................................68 2.4. Collection of biological samples.........................................69 2.4.1. Blood sampling ..................................................................70 2.4.2. Tissue sampling .................................................................71 2.5. Tissue analysis..................................................................72 2.6. Ribonucleic acid analysis...................................................73 2.6.1. RNA extraction...................................................................73 2.6.2. RNA integrity.....................................................................76 2.6.3. Reverse transcription polymerase chain reaction....................77 2.6.4. Classical polymerase chain reaction......................................78 2.6.5. Design of primers for RT-PCR...............................................81 2.6.6. Agarose gel electrophoresis and DNA extraction.....................83 2.6.7. Real-Time polymerase chain reaction....................................85 2.6.8. Housekeeping genes...........................................................91 2.7. Triglycerides extraction.....................................................94 2.7.1. Triglycerides extraction procedure........................................95 2.8. Thiobarbituric acid reactive substances analysis...............97 2.8.1. TBARS procedure ...............................................................98 2.8.2. Bicinchoninic acid total protein determination.......................100 2.9. Histological analysis........................................................101 2.9.1. Histological tissue processing.............................................101 2.9.2. Haematoxylin and eosin staining........................................102 2.10. Immunohistochemistry ...................................................104 2.10.1. IHC procedure ..............................................................104 2.11. Western blot analysis......................................................108 2.11.1. Protein extraction procedure...........................................110 2.11.2. Sample preparation procedure........................................112 2.11.3. Protein detection procedure............................................112 2.11.4. Gel electrophoresis procedure.........................................113 2.11.5. Immunoblotting procedure.............................................114 2.11.6. Immunodetection procedure...........................................115 2.11.7. Western blot troubleshooting..........................................116 2.11.8. Protein interactions and urea treatment ...........................117 2.12. Methylation analysis........................................................118 2.12.1. DNA isolation................................................................119 2.12.2. Quantification of DNA methylation levels..........................124 2.12.3. Analysis of methylation data...........................................125 2.13. Statistical analysis...........................................................127 Chapter 3 - Nutritional and biochemical influence of maternal BMI and diabetes on maternal health and newborn growth...................129 iv 3.1. Introduction and hypotheses...........................................130 3.2. Methods...........................................................................133 3.3. Results............................................................................135 3.3.1. Maternal socio-economical outcomes..................................135 3.3.2. Maternal dietary intake.....................................................137 3.3.3. Maternal clinical characteristics and anthropometry..............141 3.3.4. Maternal plasma metabolites .............................................147 3.3.5. Fetal and placental outcomes.............................................151 3.3.6. Newborn outcomes and postnatal growth............................154 3.4. Discussion.......................................................................159 3.4.1. Maternal BMI and diabetes influences maternal socio-economic status and dietary choices .............................................................159 3.4.2. Obesity, diabetes and maternal weight gain in pregnancy......162 3.4.3. Placental and neonatal anthropometry related to maternal BMI, GDM and GWG.............................................................................165 3.4.4. Insulin resistance in pregnancy influences maternal but not neonatal glycaemia: protective role of the placenta?.........................169 Chapter 4 - Effect of BMI and gestational diabetes on placental metabolism 173 4.1. Introduction and hypotheses...........................................174 4.2. Materials and methods....................................................177 4.3. Results............................................................................179 4.3.1. Maternal and cord blood physiological outcomes...................179 4.3.2. Placental glucose metabolism and gene expression...............183 4.3.3. Placental antioxidant and inflammatory response .................190 4.4. Discussion.......................................................................194 4.4.1. Influence of high maternal BMI and diabetes in pregnancy on placental insulin signalling.............................................................194 4.4.2. Placental anti-oxidant and anti-inflammatory response..........204 Chapter 5 - Effects of maternal BMI and diabetes on folate metabolism and placental methylation...........................................208 5.1. Introduction and hypotheses...........................................209 5.2. Methods...........................................................................213 5.3. Results............................................................................216 5.3.1. Folate intake and physiological outcomes............................216 5.3.2. Placental gene expression of folate transporters and metabolism 220 5.3.3. Methylation analysis .........................................................227 5.4. Discussion.......................................................................233 5.4.1. Effect of high BMI.............................................................233 5.4.2. Effect of gestational diabetes.............................................238 Chapter 6 - Conclusions............................................................243 v 6.1. General aims ...................................................................244 6.2. Summary of findings .......................................................245 6.2.1. Maternal diet and weight gain in women with high BMI and GDM 245 6.2.2. Influence of obesity and GDM on placental and newborn anthropometry and metabolism......................................................246 6.2.3. Folate availability and DNA methylation...............................248 6.3. Limitations of the study...................................................250 6.3.1. Sampling and data collection .............................................250 6.3.2. Measurements and self-reported data.................................251 6.4. Future work.....................................................................252 6.4.1. Future directions for the study of offspring obesity ...............252 6.4.2. Future directions for the study of offspring neurodevelopment..253 6.5. Final remarks ..................................................................253 Bibliography ...................................................................................254 Appendix A: Conference abstracts..................................................302 Appendix B: Suppliers.....................................................................307 vi Declaration The work in this thesis was performed at the Granada Clinical Hospital, University of Granada between 2008 and 2009 for the collection of samples and within the Academic Child Health Division, School of Clinical Sciences, University of Nottingham between November 2009 and October 2012. This thesis illustrates my own work, completed under the supervision of Professor Michael Symonds and Dr Helen Budge in Nottingham and Dr Cristina Campoy and Professor Harry McArdle in Granada and Aberdeen respectively. This report is an accurate representation of the work performed and no other study reproducing this work, to my knowledge, has been carried out within the the University of Nottingham or University of Granada. Jole Martino May 2013 vii Abbreviations 11βHSD 11-beta hydroxysteroid dehydrogenase 11βHSD1 11-beta hydroxysteroid dehydrogenase type-1 11βHSD2 11-beta hydroxysteroid dehydrogenase type-2 5-MTHF 5-methyl tetrahydrofolate Akt v-akt murine thymoma viral oncogene homologue AMPK AMP-activated protein kinase BHMT betaine–homocysteine methyltransferase BPM basal plasma membrane BMI body mass index cAMP cyclic adenosine monophosphate COX2 cyclooxygenase-2 CpG cytosine-phosphate-guanine CRP C-reactive protein CVD cardiovascular disease CβS cystathionine beta-synthase DMG dimethylglycine DMRs differentially methylated regions DNMT1 DNA methyltransferase-1 DNMT3α DNA methyltransferases-3-alpha DNMT3β DNA methyltransferases -3-beta DNMTs DNA methyltransferases FABP fatty acid binding protein FATB fatty acid transport protein FFA free fatty acids FRα folate receptor-alpha GC glucocorticoids GDM gestational diabetes mellitus GH growth hormone GLUT1 glucose transporter-1 GLUT4 glucose transporter-4 GLUTs glucose transporters GR glucocorticoid receptor GRα glucocorticoid receptor-alpha GWG gestational weight gain viii

Description:
http://eprints.nottingham.ac.uk/13714/1/J_Martino_PhD.pdf. Copyright and reuse: The Nottingham In conclusion, it appears that the placenta can protect the fetus of obese women by increasing Figure 1.7: Schematic representation of the human placenta, with a cross-section representation of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.