ebook img

Markovian Statistics on Evolving Systems PDF

0.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Markovian Statistics on Evolving Systems

Markovian Statistics on Evolving Systems UlrichFaigle1,GerhardGierz2 1 MathematischesInstitut 7 Universta¨tzuKo¨ln 1 Weyertal80,50931Ko¨ln,Germany 0 [email protected] 2 2 DepartmentofMathematics n UniversityofCaliforniaatRiverside a Riverside,CA92521,USA J [email protected] 2 2 ] Abstract. Anovelframeworkfortheanalysisofobservation statisticsontime T discretelinearevolutionsinBanachspaceispresented.Themodeldiffersfrom S traditionalmodelsforstochasticprocessesand,inparticular,clearlydistinguishes . betweenthedeterministicevolutionofasystemandthestochasticnatureofob- h t servations on the evolving system. General Markov chains are defined in this a context and it isshown how typical traditional models of classical or quantum m random walks and Markov processes fit into the framework and how a theory [ of quantum statistics (sensu Barndorff-Nielsen, Gill and Jupp) may be devel- oped from it.Theframework permitsageneral theory of joint observability of 1 twoormoreobservationvariableswhichmaybeviewedasanextensionofthe v Heisenberguncertaintyprincipleand,inparticular,offersanovelmathematical 0 4 perspective ontheviolationof Bell’sinequalitiesinquantummodels. Mainre- 1 sultsincludeageneralsamplingtheoremrelativetoRieszevolutionoperatorsin 6 thespiritofvonNeumann’smeanergodictheoremfornormaloperatorsinHilbert 0 space. . 1 0 Keywords: Banachspace,Bellinequality,ergodictheorem,evolution,Heisenbergun- 7 certainty, Hilbert space, Markov chain, observable, quantum statistics, random walk, 1 : sampling,Rieszoperator,stochasticprocess v i X 1 Introduction r a ConsiderasystemSthatisobservedatdiscretetimest = 1,2,3,...relativetoapre- specifiedeventSthatmayormaynotoccurattimet.Astatisticalanalysisisinterested intherelativefrequencyoftheeventS.Inparticular,onewouldliketoknowwhether the sample frequency of its occurrence converges to a definite limiting value. For a mathematicalformulationofthisproblem,letusdefinetheindicatorfunctionsI(t) as S (0,1)-variableswiththeeventnotation{I(t) = 1}meaningthatS isobservedattime S t.Thesampledfrequencyuptotimetwouldthenbe (t) 1 (m) I = I . S t S m=1 X WecallthestudyofthelimitingbehaviorofthesamplefrequencyofaneventS asthe Markovianproblem. MathematicalapproachestothisproblemtypicallythinkofSasarandomsource that emits symbols from some (finite or infinite) alphabetA and thus givesrise to an A-valuedstochasticprocess(X ).S isassumedtorepresentaparticulareventrelative t tothisprocessthatmayormaynotmaterializeattimet.Sotheobservationvariables I(t) reflectanassociatedstochasticprocessintheirownrightandtheexpectedaverage S numberofobservationsofS attimetis t t E(I(t))= 1 E(I(m))= 1 I(m)Pr{I(m) =1}. S t S t S m=1 m=1 X X No matter what the nature of the underlying stochastic process (X ) is, the mathe- t matical analysis of the statistical problem relative to the event S, i.e., the Markovian problem,willactuallybeontheassociatedbinaryprocess(I(t)). S The present investigation is concerned with the Markovian problem of the rela- tiveoccurrenceofsomeeventS ratherthanwiththemathematicalanalysisofgeneral stochastic processes per se. Therefore,there is no loss in generality when we restrict ourselvestoamodelwhereSisviewedassomesourcethatemitssymbolsfromsome alphabetAoffinitecardinality|A|<∞.Infact,theassumptionofAasabinaryalpha- bet(i.e.,|A|=2)wouldtheoreticallysuffice.However,itisconvenienttoalsoconsider moregeneralalphabetsoccasionally. Astochasticprocess(X )isusuallyunderstoodtobeasequenceofstochasticvari- t ablesX thataredefinedonsomeprobabilityspaceandoneisinterestedintheexpected t limitingbehaviorof(X ).However,ifonetakesstatisticson(X ),i.e.,averagestheob- t t servationof specialeventsovertime, there is notalwaysa clear asymptoticbehavior. Indeed,thereareexamplesofevencompletelydeterministicprocesses(X )whereob- t servationstatisticsdonotconverge.Itisthelimitingbehaviorofobservationaverages weareconcernedwithhere. OurapproachismotivatedbyaMarkovianinterpretationof(X ):Arandomsource t S produces symbols a of an alphabet A over time t with {X = a} denoting these t events.S isthoughtto changeoverdiscrete time t, with the probabilityPr{X = a} t dependingonthecurrentstateofS.TheclassicalexamplegoesbacktoMarkov’s[21] modelofasystemthatadmitsasetN ofgroundstatesandissubjecttoarandomwalk onN withtransitionprobabilitiesp .Thesystemstatesarethentheprobabilitydistri- ij butionsp(t)ofthepositionsoftherandomwalkattimest.TheMarkovmodelhasbeen verysuccessfulinapplicationmodeling.Statisticalmechanicsinphysics,forexample, describes the behavior of ideal gases in this way. But also the behavior of economic andsocialsystemsis oftenviewedasfollowingMarkovianprinciples.Internetsearch enginessuccessfullyorganizeandranktheirsearchaccordingtoMarkovianstatistics. Thesituationseemstobemorecomplicatedwithquantumsystemsthatdonotadmit a classicalanalysis.Forexample,theresultofaquantummeasurementisnota deter- ministic functionof the state of the system and the measuringinstrumentappliedbut MarkovianStatistics 3 ratheranexpectedvaluerelativeto some(state dependent)probabilitydistributionon thepossiblemeasurementoutcomes.Moreover,Heisenberg’suncertaintyprinciplesays thatobservationsmaynotbesimultaneouslyfeasibleunlesstheyconformtoaspecial condition.Experimentalevidencewithspincorrelations(Aspectetal.[2])furthermore exhibitsadefiniteviolationofclassicalstatisticalprinciplesasexpressedinBell’s[4,5] inequalities.WhiletheSchro¨dingerpictureofquantumstatesbeingdescribedbywave functions yields a special theory of quantum probabilities with applications also to quantum computing,active currentresearch effort is devoted to the quantum analogs ofclassicalMarkovrandomwalks. Inthisspirit,Barndorff-Nielsen,GillandJupp[3] haveputforwardatheoryofquantumstatisticalinference. The present investigation proposes a quite general model for Markovian statisti- cal analysis. Rather thanfollowingthe standardapproachto stochastic processes,our modelislinearandmotivatedbythelinearalgebraicanalysisofclassicalMarkovchains ofGilbert[14],Dharmakhari[8]andHeller[16],whichhasledtotheidentificationof more general Markov type processes (e.g., Jaeger [19]). Addressing the issue of the ”dimension” of a stochastic evolution, the asymptotic behavior of even more general stochasticprocessescouldbeclarified(FaigleandScho¨nhuth[11]).Generalizingthese previousmodels, our setting is in Banach space and focusses on the evolution of lin- earoperators,whichallowsustodealalsowiththestatisticsofdiscretequantumtype evolutionsappropriately. Thereareseveraladvantagesandnovelaspectsinourapproach.Notonlydoesour model include typical Markovian models proposed so far (see the examples in Sec- tion4),butitsgeneralityallowsustodevelopameaningfulnotionofjointlyobservable statistical measuring instruments on an evolving system. Sets of classical stochastic variablesarealwaysjointlyobservable(forthesimplereasonthattheyaremathemat- ically based on the same underlying probability space). The Heisenberg uncertainty principle,on the other hand,makes it clear that this propertyis no longer guaranteed forstatisticalobservationsonquantumsystems. WhiletheHeisenbergprincipleisformulatedforpairsofself-adjointoperators,our modelallowsustodealwiththree(ormore)operatorsaswell.WeshowthattheHeisen- berg principle correspondsto a very special case in our setting (Section 5). In fact, a carefulmathematicalanalysisofthejointobservabilityof3measurementoperatorsmay offerastraightforwardkeytotheunderstandingofBell’sinequalities(Section5.2). Theseadvantagesaretheresultofaclearseparationoftheaspectofthe(determin- istic) evolutionof a system fromthe aspectof statisticalobservationsonthe evolving systeminthemathematicalmodel. Ourpresentationis organizedasfollows.Section2introducesevolutionoperators onBanachspacesanddiscussestheir ergodicity.Thensamplingfunctionsarestudied andtheirconvergencebehaviorischaracterizedintheSamplingTheorem(Theorem3) relativetofinitaryevolutions,whichincludeallevolutionsbasedonRieszoperators,for example.ObservablesandgeneralizedMarkovchainsaredefinedin Section3. These notions are illustrated by the examples in Section 4 with particular emphasis on ran- domwalksandquantumstatistics.Theproofsofthemainresultsaredeferredintothe Appendix. 2 Evolutions ofsystems LetSbesomesystemthatisinacertainstateS atanytimet.ObservingSatdiscrete t timest = 0,1,2,...,we referto thesequenceǫ = (S ) asanevolutionofS. For t t≥0 amathematicalanalysis,theevolutionneedstoberepresentedinsome(mathematical) universe U. In the present investigation, we will always assume U to be be a vector spaceoverthecomplexfieldC.ArepresentationoftheevolutionǫinU isthenamap t7→s(t) ∈U suchthatthereisalinearoperatorψonU withtheproperty s(t+1) =ψs(t) (t=0,1,2,...). Wethinkofthevectors(t) ∈ U astherepresentationofthestateS ofSattimetand t callψanevolutionoperator.Clearly,anyevolutionǫofSadmitssucharepresentation. Forexample,astationaryrepresentation,wheres(t) = s(0) foralltandtheevolution operatorsareexactlythose(linear)operatorsonU thatfixs(0). Ina practicalsystem analysis,it isthe firsttask ofthe modelerconsistsin the de- termination of an appropriate representation of the evolution of the system S under consideration.Here,however,wewillassumethattheevolutionisalreadyrepresented insomeuniverseU sothattheevolutionsarevectorsequencesΨ oftheform Ψ =(ψ,s)=(ψts|t=0,1,2,...) where ψ is an operator on U. We furthermore assume that U is endowed with some norm k·k and is complete with respect to this norm (otherwise we replace U by its completionU). Remark1 By standard complexification argumentsin functionalanalysis (e.g., [7]), theresultsweobtaininthissectionapplytouniversesovertherealfieldRaswell.We chooseCformathematicalconvenience,withoutlossofgenerality. The evolution space of the evolution Ψ = (ψ,s) in U is the linear subspace U Ψ generatedbyΨ,i.e., U =lin{ψts|t=0,1,...}. Ψ TheparameterdimΨ = dimU isthedimensionoftheevolutionΨ.We willreferto Ψ thevectorss(t) =ψtsasthestatesofΨ. Notice that U is ψ-invariant (i.e., ψ(U ) ⊆ U ). So the restriction of ψ to U Ψ Ψ Ψ Ψ is an operatoron the normedspace U . Let U be the closureof U in U and recall Ψ Ψ Ψ from general operator theory3 that ψ extends to a unique norm bounded (and hence continuous)operatorψ : U → U with the same (finite)norm,providedψ is norm Ψ Ψ boundedonU .ThenormofψonU is Ψ Ψ kψk =inf{c∈R|kψuk≤ckukforallu∈U }. s Ψ 3e.g.,[7,9] MarkovianStatistics 5 Inthe case ofa finite-dimensionalevolution(i.e.,dimΨ < ∞),forexample,kψk is s necessarilyfinite.ThenormoftheevolutionΨ =(ψ,s)isdefinedas kΨk=inf{c∈R|kψtsk≤cksk,∀t≥0} andΨ saidtobestableifkΨk<∞.ThusΨ isstableifkψk ≤1,forexample. s Lemma1. IfΨ =(ψ,s)isstable,thenΨ′ =(ψ,s′)isstableforeverys′ ∈U .Hence Ψ therestrictionofψtoU doesnotadmitanyeigenvalueλwith|λ|>1. Ψ Proof.Consideranys′ = kj=1ajψtjs∈UΨ.Thenthetriangleinequalityyields P k kψts′k≤ kΨk |a | ksk forallt≥0. j j=1 (cid:0) X (cid:1) (cid:4) TheevolutionΨ =(ψ,s)isergodicifitsstatess(t) =ψtsconvergeinthenorm.Ψ ismeanergodicifthestateaverages t 1 s(t) = s(m) t m=1 X convergetosomelimitstates∞ ∈U .Clearly,ifs(∞)exists(ifandkψk <∞holds), Ψ s Ψ isstationaryinthesense ψs(∞) =s(∞). Moreover,anergodicevolutionisalsomeanergodic,whiletheconverseconclusionis generallyfalse. 2.1 Equivalentevolutions LetuscalltwoevolutionsΦ=(ϕ,v)andΨ =(ψ,w)inU equivalentif lim kψtw−ϕtvk=0. t→∞ ByCauchy’sTheorem,equivalenceimplies t 1 lim kψmw−ϕmvk=0. t→∞ t m=1 X So, assuming equivalence,Φ is meanergodicexactlywhen Ψ is mean ergodicandin eithercase,onehas t t 1 1 lim ψmw = lim ϕmv. (1) t→∞ t t→∞ t m=1 m=1 X X Finitaryevolutions WesaythattheevolutionΨ =(ψ,s)isfinitaryifΨ isequivalentto afinite-dimensionalevolutionΦ=(ϕ,v).Acharacterizationofthemeanergodicityof afinite-dimensionalevolutionΦfollowsfromtheanalysisofFaigleandScho¨nhuth[11] andsaysinessence:ΦismeanergodicpreciselywhenΦisequivalenttoanevolution Π =(π,v),whereπisaprojectionoperatoronU =U . Φ Φ Proposition1 ([11]).LetΦ=(ϕ,v)beafinite-dimensionalevolution.ThenΦismean ergodicifandonlyifΦisstable.Moreover,ifΦisstable,onehas t 1 0 ifλ=1isnotaneigenvalueofϕ lim ϕmv = t→∞ t P1v ifλ=1isaneigenvalueofϕ, m=1 (cid:26) X whereP isaprojectionoperatorontotheeigenspaceE ={x∈U |x=ϕx}. 1 1 Φ Proof. By Lemma1,Φis stableif andonlyif(φ,v′)isstableforallv′ ∈ U .So Φ Proposition1isadirectconsequenceofTheorem2anditsproofin[11]. (cid:4) Riesz evolutions Recall that the spectrum σ(T) of a (linear) operator T : V → V on a complexnormed vector space V consists of those λ ∈ C such that the operator L =T−λ(withvaluesL v =Tv−λv)isnotinvertible.T iscalledaRieszoperator λ λ ifT isboundedand (a) eachλ∈σ(T)\{0}isaneigenvalueofT withfinitealgebraicmultiplicity; (b) 0istheonlypossibleaccumulationpointofσ(T). Rieszoperatorsformaquitewideclassofoperatorsthatincludestheso-calledcom- pact operators.In particular,everyoperatorT with finite-dimensionalrange is Riesz. Furtherexamplesarethe Hilbert-Schmidtoperatorsona HilbertspaceH, namelythe boundedoperatorsT :H→Hsuchthat kTe k2 <∞ i i∈I X holdsforsomeorthonormalbasis{e |i∈I}ofH.Notethateveryoperatoronafinite- i dimensionalvectorspaceV istriviallyHilbert-Schmidtrelativetoanyinnerproduct. A Riesz evolution in our universe U is now an evolution Ψ = (ψ,s) such that ψ extendstoaRieszoperatorψ :U →U .Inparticular,everyevolutionunderaRiesz Ψ Ψ evolutionoperatoronU isRiesz. Thecharacterizationofmeanergodicfinite-dimensionalevolutions(Proposition1) extendstogeneralRieszevolutions. Theorem1. LetΨ =(ψ,s)beanyRieszevolutioninU.ThenΨ isfinitary.Moreover, Ψ ismeanergodicifandonlyifΨ isstable.Inparticular,ifΨ isstable,onehas t 1 0 ifλ=1isnotaneigenvalueofψ lim ψmv = t→∞ t m=1 (cid:26)P1v ifλ=1isaneigenvalueofψ, X whereP isaprojectionoperatorontotheeigenspaceE ={x∈Uˆ |x=ψx}. 1 1 Φ MarkovianStatistics 7 TheessentialpartoftheproofofTheorem1consistsinshowingthatRieszevolu- tionsarefinitary.WediscussthedetailsintheAppendix(cf.Proposition2there). NormalevolutionsinHilbertspace LetHbeaHilbertspaceandrecallthatanoper- atorT onHisnormalifT commuteswithitsadjointT∗(i.e.,TT∗ =T∗T). Theorem2. LetψbeaboundednormaloperatoronHandΨ = (ψ,s)anevolution. Thenthefollowingstatementsareequivalent: (i) Ψ isstable. (ii) Ψ ismeanergodic. In this case, the averages s(t) converge to the orthogonal projection of s onto the eigenspaceE ={x∈H|ψx=x}. 1 WeproveTheorem2intheAppendix.Theimplication”(i)⇒(ii)”iswell-known andusuallystatedasvonNeumann’smeanergodictheorem: Corollary1 (vonNeumann).Ifψ isanormaloperatoronHofnormkψk ≤ 1,then everyevolutionΨ =(ψ,s)ismeanergodic. (cid:4) Animportantspecialcaseistheevolutionofawavefunctionv ∈ Hofaquantum system in discrete time. According to Schro¨dinger’s differential equation, there is a unitaryoperatorU (i.e.UU∗ = I = U∗U)sothatthediscreteevolutionofv isgiven as v(t) =Utv (t=0,1,...). Clearly,theoperatorv 7→Uvisnormalandbounded.Moreover,(U,v)isstableforany v ∈H.SoSchro¨dingerevolutionsaremeanergodic. 2.2 Sampling By a sampling function relative to the universe U we understand a continuous linear map f : U → F, where F is a normed vector space of samples. With respect to an evolutionψ =(ψ,s),thef =f(ψts)arethesamplingvalueswiththecorresponding t samplingaverages t t 1 1 f = f = f(ψms) (t=1,2,...). t t m t m=1 m=1 X X Inapplications,asamplingfunctionf willtypicallybeafunctionalintothescalarfield ofU.ButmoregeneralsamplespacesF mayalsobeofinterest. Thesamplingaverageswill,ofcourse,convergewhenΨ ismeanergodic.Unitary evolutionsinHilbertspace,forexample,willguaranteeconvergingsamplingaverages. But sampling averages may possibly also converge on evolutions that are not mean ergodic.Thesamplingconvergenceonfinitaryevolutionsischaracterizedasfollows. Theorem3 (Sampling Theorem). Let Ψ = (ψ,s) be an arbitrary finitary evolution andf :U →F asamplingfunction.Thenthefollowingstatementsareequivalent: (i) Thesamplingaveragesf converge. t (ii) Thesamplingvaluesf areboundedinnorm. t Again,wedefertheproof ofTheorem3totheAppendix.ChoosingF =U andf =I astheidentityoperator,weimmediatelynote: Corollary2. LetΨ =(ψ,s)beanarbitraryfinitaryevolutioninU.Then Ψ ismeanergodic ⇐⇒ Ψ isstable. (cid:4) 3 Observables and Markovchains LetA be a finite or countableset. Anobservablewith rangeA onthe evolutionΨ = (ψ,s)inU isacollectionX ={χ |a ∈A}ofcontinuouslinearfunctionalsχ such a a thattheχ (s(t))arerealnumberswiththeproperty a p(t) =χ (s(t))≥0 ∀a∈A and p(t) =1. a a a a∈A X WethinkofX asproducingtheevent{X =a}attimetwithprobability t Pr{X =a}=p(t). t a SotheobservableX yieldsasequence(X )ofstochasticvariablesX withprobability t t distributionsp(t).Wecall(X )a(generalized)MarkovchainonA. t Remark2 The probability distributionsp(t) of X may be viewed as ”stochastic ker- a nel”ofXandthusgeneralizetheideaofakernelofclassicalMarkovchaintheory(see, e.g.[13,17]).AMarkov chaininoursense,however,doesnotneedtobeastochastic processnordoesitsstochastickernelneedtoreflectanyconditionalprobabilitieswith respecttostatetransitions. Related to the (generalized) Markov chain (X ) is are (statistical) sampling pro- t cesses(Ya)withrespecttoanya∈A,where t 1ifX =a Ya = t t 0otherwise. (cid:26) (Ya)isaMarkovchainonΨ initsownrightwithbinaryalphabet{0,1}andprobability t distributions Pr{Ya =1}=p(t) and Pr{Ya =0}=1−p(t). t a t a MarkovianStatistics 9 AssumingthattheevolutionΨ isfinitary,forexample,Theorem3impliesthatthe expectationoftheobservationaverages t t t 1 1 1 E Ya = E(Ya)= Pr{Ya =1} t m t m t m ! m=1 m=1 m=1 X X X convergestoadefinitelimitp(∞) ≥ 0sincethenumbersPr{Ya = 1}arebounded.In a t viewof p(m) =1 forallm≥1, a a∈A X weconcludethatp(∞) = {p(∞)|a ∈ A}isaprobabilitydistributiononA.Itisinthat a sensethatwerefertop(∞) asthelimitdistributionoftheMarkovchain(X ). t 4 Examples 4.1 Evolutionsofstochasticprocesses Let(X ) be a discrete stochasticprocessthattakesvaluesin the alphabetA. Without t lossofgenerality,weassumethatAisbinary,sayA={0,1}.Asusual,wedenotethe setofallfinitelengthwordsoverAas ∞ A∗ = An, n=0 [ whereA0 = {(cid:3)}and (cid:3) is the emptyword.Foranyv = v v ...v ∈ An, |v| = n 1 2 n is the length of v. Recall that A∗ is a semigroup with neutral element (cid:3) under the concatenationoperation (v ...v )(w ...w )=v ...v w ...w . 1 n 1 k 1 n 1 k Moreover,weset p(w ...w |v ...v )=Pr{X =w ,...X =w |X =v ,...,X =v } 1 k 1 n n+1 1 n+k k 1 1 k n and p(v) = p(v|(cid:3)). If v ∈ At has been produced, the process is in a state that is describedbythepredictionvectorPv withthecomponents Pv =p(w|v) (w ∈A∗). w Theexpectedcoordinatevaluesofthenextpredictionvectorarethengivenbythecom- ponentsofthevector ψPv =p(0|v)Pv0+p(1|v)Pv1. Binomialexpansion,therefore,immediatelyshowsthattheexpectedpredictionvector attimetisgivenby p(v)Pv =ψtP(cid:3). v∈At X SincethecomponentsofthepredictionvectorsPvarebounded,theygenerateanormed vectorspaceP withrespecttothesupremumnorm kgk = sup |g |. ∞ w w∈A∗ Moreover,isitnotdifficulttoseethatψextendstoauniquelinearoperatoronP.The evolutionΨ =(ψ,P(cid:3))issaidtobetheevolutionofthestochasticprocess(X ). t Foranya∈A,onehas (ψtP(cid:3)) = p(v)Pv =Pr{X =a}. a a t+1 v∈At X Since coordinate projections are continuous linear functionals, we find that observa- tionson(X )yieldobservablesinthesenseofSection3,whichallowsustoviewthe t stochasticprocess(X )asa(generalized)MarkovchainonA. t Remark3 TheevolutionofstochasticprocesseswasfirststudiedbyFaigleandScho¨n- huth[11], towhichbereferforfurtherdetails.Thestochasticevolutionmodelgener- alizesearlierlinearmodelsfortheanalysisofMarkovtypestochasticprocesses(e.g., Gilbert[14],Dharmadhikari[8],Heller[16]andJaeger[19]). 4.2 Finite-dimensionalevolutions Finite-dimensionalevolutionmodelsareofparticularinterestinapplications.Anevo- lution Ψ = (ψ,s) in Rn admits an (n × n)-matrix M such that ψx = Mx holds for all x ∈ Rn. As observedin [11], Ψ is mean ergodicexactly when Ψ is stable (cf. Corollary2). LettingN = {1,...,n}andassumingthatsandallcolumnsofM areprobability distributions on N, Ψ is clearly stable and hence mean ergodic. The Markov chain relative to {χ |i ∈ N}, where the χ are the projections onto the n components of i i x ∈ Rn, yields the well-known model of a random walk on N with the transition matrixM.ConsideringanymapX : N → AintosomealphabetA,inducedMarkov chainwiththe”kernel”functionals χ (x)= x (x=(x ,...,x )∈Rn) a i 1 n XX(i)=a is classically known as a hidden Markov chain on A. Hidden Markov models have provedveryusefulinpracticalapplications4. Itisimportanttonote,however,thatevenfinite-dimensionalMarkovchainsinthe general sense of Section 3 are not necessarily stochastic processes (see Example 1 in Section 5.2 below). Also quantum random walks (Section 4.4 are not necessarily stochasticprocesses. 4see,e.g.,[6,10,26]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.