Markovian Statistics on Evolving Systems UlrichFaigle1,GerhardGierz2 1 MathematischesInstitut 7 Universta¨tzuKo¨ln 1 Weyertal80,50931Ko¨ln,Germany 0 [email protected] 2 2 DepartmentofMathematics n UniversityofCaliforniaatRiverside a Riverside,CA92521,USA J [email protected] 2 2 ] Abstract. Anovelframeworkfortheanalysisofobservation statisticsontime T discretelinearevolutionsinBanachspaceispresented.Themodeldiffersfrom S traditionalmodelsforstochasticprocessesand,inparticular,clearlydistinguishes . betweenthedeterministicevolutionofasystemandthestochasticnatureofob- h t servations on the evolving system. General Markov chains are defined in this a context and it isshown how typical traditional models of classical or quantum m random walks and Markov processes fit into the framework and how a theory [ of quantum statistics (sensu Barndorff-Nielsen, Gill and Jupp) may be devel- oped from it.Theframework permitsageneral theory of joint observability of 1 twoormoreobservationvariableswhichmaybeviewedasanextensionofthe v Heisenberguncertaintyprincipleand,inparticular,offersanovelmathematical 0 4 perspective ontheviolationof Bell’sinequalitiesinquantummodels. Mainre- 1 sultsincludeageneralsamplingtheoremrelativetoRieszevolutionoperatorsin 6 thespiritofvonNeumann’smeanergodictheoremfornormaloperatorsinHilbert 0 space. . 1 0 Keywords: Banachspace,Bellinequality,ergodictheorem,evolution,Heisenbergun- 7 certainty, Hilbert space, Markov chain, observable, quantum statistics, random walk, 1 : sampling,Rieszoperator,stochasticprocess v i X 1 Introduction r a ConsiderasystemSthatisobservedatdiscretetimest = 1,2,3,...relativetoapre- specifiedeventSthatmayormaynotoccurattimet.Astatisticalanalysisisinterested intherelativefrequencyoftheeventS.Inparticular,onewouldliketoknowwhether the sample frequency of its occurrence converges to a definite limiting value. For a mathematicalformulationofthisproblem,letusdefinetheindicatorfunctionsI(t) as S (0,1)-variableswiththeeventnotation{I(t) = 1}meaningthatS isobservedattime S t.Thesampledfrequencyuptotimetwouldthenbe (t) 1 (m) I = I . S t S m=1 X WecallthestudyofthelimitingbehaviorofthesamplefrequencyofaneventS asthe Markovianproblem. MathematicalapproachestothisproblemtypicallythinkofSasarandomsource that emits symbols from some (finite or infinite) alphabetA and thus givesrise to an A-valuedstochasticprocess(X ).S isassumedtorepresentaparticulareventrelative t tothisprocessthatmayormaynotmaterializeattimet.Sotheobservationvariables I(t) reflectanassociatedstochasticprocessintheirownrightandtheexpectedaverage S numberofobservationsofS attimetis t t E(I(t))= 1 E(I(m))= 1 I(m)Pr{I(m) =1}. S t S t S m=1 m=1 X X No matter what the nature of the underlying stochastic process (X ) is, the mathe- t matical analysis of the statistical problem relative to the event S, i.e., the Markovian problem,willactuallybeontheassociatedbinaryprocess(I(t)). S The present investigation is concerned with the Markovian problem of the rela- tiveoccurrenceofsomeeventS ratherthanwiththemathematicalanalysisofgeneral stochastic processes per se. Therefore,there is no loss in generality when we restrict ourselvestoamodelwhereSisviewedassomesourcethatemitssymbolsfromsome alphabetAoffinitecardinality|A|<∞.Infact,theassumptionofAasabinaryalpha- bet(i.e.,|A|=2)wouldtheoreticallysuffice.However,itisconvenienttoalsoconsider moregeneralalphabetsoccasionally. Astochasticprocess(X )isusuallyunderstoodtobeasequenceofstochasticvari- t ablesX thataredefinedonsomeprobabilityspaceandoneisinterestedintheexpected t limitingbehaviorof(X ).However,ifonetakesstatisticson(X ),i.e.,averagestheob- t t servationof specialeventsovertime, there is notalwaysa clear asymptoticbehavior. Indeed,thereareexamplesofevencompletelydeterministicprocesses(X )whereob- t servationstatisticsdonotconverge.Itisthelimitingbehaviorofobservationaverages weareconcernedwithhere. OurapproachismotivatedbyaMarkovianinterpretationof(X ):Arandomsource t S produces symbols a of an alphabet A over time t with {X = a} denoting these t events.S isthoughtto changeoverdiscrete time t, with the probabilityPr{X = a} t dependingonthecurrentstateofS.TheclassicalexamplegoesbacktoMarkov’s[21] modelofasystemthatadmitsasetN ofgroundstatesandissubjecttoarandomwalk onN withtransitionprobabilitiesp .Thesystemstatesarethentheprobabilitydistri- ij butionsp(t)ofthepositionsoftherandomwalkattimest.TheMarkovmodelhasbeen verysuccessfulinapplicationmodeling.Statisticalmechanicsinphysics,forexample, describes the behavior of ideal gases in this way. But also the behavior of economic andsocialsystemsis oftenviewedasfollowingMarkovianprinciples.Internetsearch enginessuccessfullyorganizeandranktheirsearchaccordingtoMarkovianstatistics. Thesituationseemstobemorecomplicatedwithquantumsystemsthatdonotadmit a classicalanalysis.Forexample,theresultofaquantummeasurementisnota deter- ministic functionof the state of the system and the measuringinstrumentappliedbut MarkovianStatistics 3 ratheranexpectedvaluerelativeto some(state dependent)probabilitydistributionon thepossiblemeasurementoutcomes.Moreover,Heisenberg’suncertaintyprinciplesays thatobservationsmaynotbesimultaneouslyfeasibleunlesstheyconformtoaspecial condition.Experimentalevidencewithspincorrelations(Aspectetal.[2])furthermore exhibitsadefiniteviolationofclassicalstatisticalprinciplesasexpressedinBell’s[4,5] inequalities.WhiletheSchro¨dingerpictureofquantumstatesbeingdescribedbywave functions yields a special theory of quantum probabilities with applications also to quantum computing,active currentresearch effort is devoted to the quantum analogs ofclassicalMarkovrandomwalks. Inthisspirit,Barndorff-Nielsen,GillandJupp[3] haveputforwardatheoryofquantumstatisticalinference. The present investigation proposes a quite general model for Markovian statisti- cal analysis. Rather thanfollowingthe standardapproachto stochastic processes,our modelislinearandmotivatedbythelinearalgebraicanalysisofclassicalMarkovchains ofGilbert[14],Dharmakhari[8]andHeller[16],whichhasledtotheidentificationof more general Markov type processes (e.g., Jaeger [19]). Addressing the issue of the ”dimension” of a stochastic evolution, the asymptotic behavior of even more general stochasticprocessescouldbeclarified(FaigleandScho¨nhuth[11]).Generalizingthese previousmodels, our setting is in Banach space and focusses on the evolution of lin- earoperators,whichallowsustodealalsowiththestatisticsofdiscretequantumtype evolutionsappropriately. Thereareseveraladvantagesandnovelaspectsinourapproach.Notonlydoesour model include typical Markovian models proposed so far (see the examples in Sec- tion4),butitsgeneralityallowsustodevelopameaningfulnotionofjointlyobservable statistical measuring instruments on an evolving system. Sets of classical stochastic variablesarealwaysjointlyobservable(forthesimplereasonthattheyaremathemat- ically based on the same underlying probability space). The Heisenberg uncertainty principle,on the other hand,makes it clear that this propertyis no longer guaranteed forstatisticalobservationsonquantumsystems. WhiletheHeisenbergprincipleisformulatedforpairsofself-adjointoperators,our modelallowsustodealwiththree(ormore)operatorsaswell.WeshowthattheHeisen- berg principle correspondsto a very special case in our setting (Section 5). In fact, a carefulmathematicalanalysisofthejointobservabilityof3measurementoperatorsmay offerastraightforwardkeytotheunderstandingofBell’sinequalities(Section5.2). Theseadvantagesaretheresultofaclearseparationoftheaspectofthe(determin- istic) evolutionof a system fromthe aspectof statisticalobservationsonthe evolving systeminthemathematicalmodel. Ourpresentationis organizedasfollows.Section2introducesevolutionoperators onBanachspacesanddiscussestheir ergodicity.Thensamplingfunctionsarestudied andtheirconvergencebehaviorischaracterizedintheSamplingTheorem(Theorem3) relativetofinitaryevolutions,whichincludeallevolutionsbasedonRieszoperators,for example.ObservablesandgeneralizedMarkovchainsaredefinedin Section3. These notions are illustrated by the examples in Section 4 with particular emphasis on ran- domwalksandquantumstatistics.Theproofsofthemainresultsaredeferredintothe Appendix. 2 Evolutions ofsystems LetSbesomesystemthatisinacertainstateS atanytimet.ObservingSatdiscrete t timest = 0,1,2,...,we referto thesequenceǫ = (S ) asanevolutionofS. For t t≥0 amathematicalanalysis,theevolutionneedstoberepresentedinsome(mathematical) universe U. In the present investigation, we will always assume U to be be a vector spaceoverthecomplexfieldC.ArepresentationoftheevolutionǫinU isthenamap t7→s(t) ∈U suchthatthereisalinearoperatorψonU withtheproperty s(t+1) =ψs(t) (t=0,1,2,...). Wethinkofthevectors(t) ∈ U astherepresentationofthestateS ofSattimetand t callψanevolutionoperator.Clearly,anyevolutionǫofSadmitssucharepresentation. Forexample,astationaryrepresentation,wheres(t) = s(0) foralltandtheevolution operatorsareexactlythose(linear)operatorsonU thatfixs(0). Ina practicalsystem analysis,it isthe firsttask ofthe modelerconsistsin the de- termination of an appropriate representation of the evolution of the system S under consideration.Here,however,wewillassumethattheevolutionisalreadyrepresented insomeuniverseU sothattheevolutionsarevectorsequencesΨ oftheform Ψ =(ψ,s)=(ψts|t=0,1,2,...) where ψ is an operator on U. We furthermore assume that U is endowed with some norm k·k and is complete with respect to this norm (otherwise we replace U by its completionU). Remark1 By standard complexification argumentsin functionalanalysis (e.g., [7]), theresultsweobtaininthissectionapplytouniversesovertherealfieldRaswell.We chooseCformathematicalconvenience,withoutlossofgenerality. The evolution space of the evolution Ψ = (ψ,s) in U is the linear subspace U Ψ generatedbyΨ,i.e., U =lin{ψts|t=0,1,...}. Ψ TheparameterdimΨ = dimU isthedimensionoftheevolutionΨ.We willreferto Ψ thevectorss(t) =ψtsasthestatesofΨ. Notice that U is ψ-invariant (i.e., ψ(U ) ⊆ U ). So the restriction of ψ to U Ψ Ψ Ψ Ψ is an operatoron the normedspace U . Let U be the closureof U in U and recall Ψ Ψ Ψ from general operator theory3 that ψ extends to a unique norm bounded (and hence continuous)operatorψ : U → U with the same (finite)norm,providedψ is norm Ψ Ψ boundedonU .ThenormofψonU is Ψ Ψ kψk =inf{c∈R|kψuk≤ckukforallu∈U }. s Ψ 3e.g.,[7,9] MarkovianStatistics 5 Inthe case ofa finite-dimensionalevolution(i.e.,dimΨ < ∞),forexample,kψk is s necessarilyfinite.ThenormoftheevolutionΨ =(ψ,s)isdefinedas kΨk=inf{c∈R|kψtsk≤cksk,∀t≥0} andΨ saidtobestableifkΨk<∞.ThusΨ isstableifkψk ≤1,forexample. s Lemma1. IfΨ =(ψ,s)isstable,thenΨ′ =(ψ,s′)isstableforeverys′ ∈U .Hence Ψ therestrictionofψtoU doesnotadmitanyeigenvalueλwith|λ|>1. Ψ Proof.Consideranys′ = kj=1ajψtjs∈UΨ.Thenthetriangleinequalityyields P k kψts′k≤ kΨk |a | ksk forallt≥0. j j=1 (cid:0) X (cid:1) (cid:4) TheevolutionΨ =(ψ,s)isergodicifitsstatess(t) =ψtsconvergeinthenorm.Ψ ismeanergodicifthestateaverages t 1 s(t) = s(m) t m=1 X convergetosomelimitstates∞ ∈U .Clearly,ifs(∞)exists(ifandkψk <∞holds), Ψ s Ψ isstationaryinthesense ψs(∞) =s(∞). Moreover,anergodicevolutionisalsomeanergodic,whiletheconverseconclusionis generallyfalse. 2.1 Equivalentevolutions LetuscalltwoevolutionsΦ=(ϕ,v)andΨ =(ψ,w)inU equivalentif lim kψtw−ϕtvk=0. t→∞ ByCauchy’sTheorem,equivalenceimplies t 1 lim kψmw−ϕmvk=0. t→∞ t m=1 X So, assuming equivalence,Φ is meanergodicexactlywhen Ψ is mean ergodicandin eithercase,onehas t t 1 1 lim ψmw = lim ϕmv. (1) t→∞ t t→∞ t m=1 m=1 X X Finitaryevolutions WesaythattheevolutionΨ =(ψ,s)isfinitaryifΨ isequivalentto afinite-dimensionalevolutionΦ=(ϕ,v).Acharacterizationofthemeanergodicityof afinite-dimensionalevolutionΦfollowsfromtheanalysisofFaigleandScho¨nhuth[11] andsaysinessence:ΦismeanergodicpreciselywhenΦisequivalenttoanevolution Π =(π,v),whereπisaprojectionoperatoronU =U . Φ Φ Proposition1 ([11]).LetΦ=(ϕ,v)beafinite-dimensionalevolution.ThenΦismean ergodicifandonlyifΦisstable.Moreover,ifΦisstable,onehas t 1 0 ifλ=1isnotaneigenvalueofϕ lim ϕmv = t→∞ t P1v ifλ=1isaneigenvalueofϕ, m=1 (cid:26) X whereP isaprojectionoperatorontotheeigenspaceE ={x∈U |x=ϕx}. 1 1 Φ Proof. By Lemma1,Φis stableif andonlyif(φ,v′)isstableforallv′ ∈ U .So Φ Proposition1isadirectconsequenceofTheorem2anditsproofin[11]. (cid:4) Riesz evolutions Recall that the spectrum σ(T) of a (linear) operator T : V → V on a complexnormed vector space V consists of those λ ∈ C such that the operator L =T−λ(withvaluesL v =Tv−λv)isnotinvertible.T iscalledaRieszoperator λ λ ifT isboundedand (a) eachλ∈σ(T)\{0}isaneigenvalueofT withfinitealgebraicmultiplicity; (b) 0istheonlypossibleaccumulationpointofσ(T). Rieszoperatorsformaquitewideclassofoperatorsthatincludestheso-calledcom- pact operators.In particular,everyoperatorT with finite-dimensionalrange is Riesz. Furtherexamplesarethe Hilbert-Schmidtoperatorsona HilbertspaceH, namelythe boundedoperatorsT :H→Hsuchthat kTe k2 <∞ i i∈I X holdsforsomeorthonormalbasis{e |i∈I}ofH.Notethateveryoperatoronafinite- i dimensionalvectorspaceV istriviallyHilbert-Schmidtrelativetoanyinnerproduct. A Riesz evolution in our universe U is now an evolution Ψ = (ψ,s) such that ψ extendstoaRieszoperatorψ :U →U .Inparticular,everyevolutionunderaRiesz Ψ Ψ evolutionoperatoronU isRiesz. Thecharacterizationofmeanergodicfinite-dimensionalevolutions(Proposition1) extendstogeneralRieszevolutions. Theorem1. LetΨ =(ψ,s)beanyRieszevolutioninU.ThenΨ isfinitary.Moreover, Ψ ismeanergodicifandonlyifΨ isstable.Inparticular,ifΨ isstable,onehas t 1 0 ifλ=1isnotaneigenvalueofψ lim ψmv = t→∞ t m=1 (cid:26)P1v ifλ=1isaneigenvalueofψ, X whereP isaprojectionoperatorontotheeigenspaceE ={x∈Uˆ |x=ψx}. 1 1 Φ MarkovianStatistics 7 TheessentialpartoftheproofofTheorem1consistsinshowingthatRieszevolu- tionsarefinitary.WediscussthedetailsintheAppendix(cf.Proposition2there). NormalevolutionsinHilbertspace LetHbeaHilbertspaceandrecallthatanoper- atorT onHisnormalifT commuteswithitsadjointT∗(i.e.,TT∗ =T∗T). Theorem2. LetψbeaboundednormaloperatoronHandΨ = (ψ,s)anevolution. Thenthefollowingstatementsareequivalent: (i) Ψ isstable. (ii) Ψ ismeanergodic. In this case, the averages s(t) converge to the orthogonal projection of s onto the eigenspaceE ={x∈H|ψx=x}. 1 WeproveTheorem2intheAppendix.Theimplication”(i)⇒(ii)”iswell-known andusuallystatedasvonNeumann’smeanergodictheorem: Corollary1 (vonNeumann).Ifψ isanormaloperatoronHofnormkψk ≤ 1,then everyevolutionΨ =(ψ,s)ismeanergodic. (cid:4) Animportantspecialcaseistheevolutionofawavefunctionv ∈ Hofaquantum system in discrete time. According to Schro¨dinger’s differential equation, there is a unitaryoperatorU (i.e.UU∗ = I = U∗U)sothatthediscreteevolutionofv isgiven as v(t) =Utv (t=0,1,...). Clearly,theoperatorv 7→Uvisnormalandbounded.Moreover,(U,v)isstableforany v ∈H.SoSchro¨dingerevolutionsaremeanergodic. 2.2 Sampling By a sampling function relative to the universe U we understand a continuous linear map f : U → F, where F is a normed vector space of samples. With respect to an evolutionψ =(ψ,s),thef =f(ψts)arethesamplingvalueswiththecorresponding t samplingaverages t t 1 1 f = f = f(ψms) (t=1,2,...). t t m t m=1 m=1 X X Inapplications,asamplingfunctionf willtypicallybeafunctionalintothescalarfield ofU.ButmoregeneralsamplespacesF mayalsobeofinterest. Thesamplingaverageswill,ofcourse,convergewhenΨ ismeanergodic.Unitary evolutionsinHilbertspace,forexample,willguaranteeconvergingsamplingaverages. But sampling averages may possibly also converge on evolutions that are not mean ergodic.Thesamplingconvergenceonfinitaryevolutionsischaracterizedasfollows. Theorem3 (Sampling Theorem). Let Ψ = (ψ,s) be an arbitrary finitary evolution andf :U →F asamplingfunction.Thenthefollowingstatementsareequivalent: (i) Thesamplingaveragesf converge. t (ii) Thesamplingvaluesf areboundedinnorm. t Again,wedefertheproof ofTheorem3totheAppendix.ChoosingF =U andf =I astheidentityoperator,weimmediatelynote: Corollary2. LetΨ =(ψ,s)beanarbitraryfinitaryevolutioninU.Then Ψ ismeanergodic ⇐⇒ Ψ isstable. (cid:4) 3 Observables and Markovchains LetA be a finite or countableset. Anobservablewith rangeA onthe evolutionΨ = (ψ,s)inU isacollectionX ={χ |a ∈A}ofcontinuouslinearfunctionalsχ such a a thattheχ (s(t))arerealnumberswiththeproperty a p(t) =χ (s(t))≥0 ∀a∈A and p(t) =1. a a a a∈A X WethinkofX asproducingtheevent{X =a}attimetwithprobability t Pr{X =a}=p(t). t a SotheobservableX yieldsasequence(X )ofstochasticvariablesX withprobability t t distributionsp(t).Wecall(X )a(generalized)MarkovchainonA. t Remark2 The probability distributionsp(t) of X may be viewed as ”stochastic ker- a nel”ofXandthusgeneralizetheideaofakernelofclassicalMarkovchaintheory(see, e.g.[13,17]).AMarkov chaininoursense,however,doesnotneedtobeastochastic processnordoesitsstochastickernelneedtoreflectanyconditionalprobabilitieswith respecttostatetransitions. Related to the (generalized) Markov chain (X ) is are (statistical) sampling pro- t cesses(Ya)withrespecttoanya∈A,where t 1ifX =a Ya = t t 0otherwise. (cid:26) (Ya)isaMarkovchainonΨ initsownrightwithbinaryalphabet{0,1}andprobability t distributions Pr{Ya =1}=p(t) and Pr{Ya =0}=1−p(t). t a t a MarkovianStatistics 9 AssumingthattheevolutionΨ isfinitary,forexample,Theorem3impliesthatthe expectationoftheobservationaverages t t t 1 1 1 E Ya = E(Ya)= Pr{Ya =1} t m t m t m ! m=1 m=1 m=1 X X X convergestoadefinitelimitp(∞) ≥ 0sincethenumbersPr{Ya = 1}arebounded.In a t viewof p(m) =1 forallm≥1, a a∈A X weconcludethatp(∞) = {p(∞)|a ∈ A}isaprobabilitydistributiononA.Itisinthat a sensethatwerefertop(∞) asthelimitdistributionoftheMarkovchain(X ). t 4 Examples 4.1 Evolutionsofstochasticprocesses Let(X ) be a discrete stochasticprocessthattakesvaluesin the alphabetA. Without t lossofgenerality,weassumethatAisbinary,sayA={0,1}.Asusual,wedenotethe setofallfinitelengthwordsoverAas ∞ A∗ = An, n=0 [ whereA0 = {(cid:3)}and (cid:3) is the emptyword.Foranyv = v v ...v ∈ An, |v| = n 1 2 n is the length of v. Recall that A∗ is a semigroup with neutral element (cid:3) under the concatenationoperation (v ...v )(w ...w )=v ...v w ...w . 1 n 1 k 1 n 1 k Moreover,weset p(w ...w |v ...v )=Pr{X =w ,...X =w |X =v ,...,X =v } 1 k 1 n n+1 1 n+k k 1 1 k n and p(v) = p(v|(cid:3)). If v ∈ At has been produced, the process is in a state that is describedbythepredictionvectorPv withthecomponents Pv =p(w|v) (w ∈A∗). w Theexpectedcoordinatevaluesofthenextpredictionvectorarethengivenbythecom- ponentsofthevector ψPv =p(0|v)Pv0+p(1|v)Pv1. Binomialexpansion,therefore,immediatelyshowsthattheexpectedpredictionvector attimetisgivenby p(v)Pv =ψtP(cid:3). v∈At X SincethecomponentsofthepredictionvectorsPvarebounded,theygenerateanormed vectorspaceP withrespecttothesupremumnorm kgk = sup |g |. ∞ w w∈A∗ Moreover,isitnotdifficulttoseethatψextendstoauniquelinearoperatoronP.The evolutionΨ =(ψ,P(cid:3))issaidtobetheevolutionofthestochasticprocess(X ). t Foranya∈A,onehas (ψtP(cid:3)) = p(v)Pv =Pr{X =a}. a a t+1 v∈At X Since coordinate projections are continuous linear functionals, we find that observa- tionson(X )yieldobservablesinthesenseofSection3,whichallowsustoviewthe t stochasticprocess(X )asa(generalized)MarkovchainonA. t Remark3 TheevolutionofstochasticprocesseswasfirststudiedbyFaigleandScho¨n- huth[11], towhichbereferforfurtherdetails.Thestochasticevolutionmodelgener- alizesearlierlinearmodelsfortheanalysisofMarkovtypestochasticprocesses(e.g., Gilbert[14],Dharmadhikari[8],Heller[16]andJaeger[19]). 4.2 Finite-dimensionalevolutions Finite-dimensionalevolutionmodelsareofparticularinterestinapplications.Anevo- lution Ψ = (ψ,s) in Rn admits an (n × n)-matrix M such that ψx = Mx holds for all x ∈ Rn. As observedin [11], Ψ is mean ergodicexactly when Ψ is stable (cf. Corollary2). LettingN = {1,...,n}andassumingthatsandallcolumnsofM areprobability distributions on N, Ψ is clearly stable and hence mean ergodic. The Markov chain relative to {χ |i ∈ N}, where the χ are the projections onto the n components of i i x ∈ Rn, yields the well-known model of a random walk on N with the transition matrixM.ConsideringanymapX : N → AintosomealphabetA,inducedMarkov chainwiththe”kernel”functionals χ (x)= x (x=(x ,...,x )∈Rn) a i 1 n XX(i)=a is classically known as a hidden Markov chain on A. Hidden Markov models have provedveryusefulinpracticalapplications4. Itisimportanttonote,however,thatevenfinite-dimensionalMarkovchainsinthe general sense of Section 3 are not necessarily stochastic processes (see Example 1 in Section 5.2 below). Also quantum random walks (Section 4.4 are not necessarily stochasticprocesses. 4see,e.g.,[6,10,26]