ebook img

Markov processes and applications: Algorithms, networks, genome and finance PDF

324 Pages·2009·1.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Markov processes and applications: Algorithms, networks, genome and finance

Markov Processes and Applications Algorithms, Networks, Genome and Finance E´tienne Pardoux Laboratoire d’Analyse, Topologie, Probabilite´s Centre de Mathe´matiques et d’Informatique Universite´ de Provence, Marseille, France. A John Wiley and Sons, Ltd., Publication ThisworkisintheWiley-DunodSeriesco-publishedbetweenDunodandJohnWiley&Sons,Ltd. Markov Processes and Applications WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: DavidJ.Balding,NoelA.C.Cressie,GarrettM.Fitzmaurice, IainM.Johnstone,GeertMolenberghs,DavidW.Scott,AdrianF.M.Smith, RueyS.Tsay,SanfordWeisberg Editors Emeriti: VicBarnett,J.StuartHunter,JozefL.Teugels A complete list of titles in this series appears at the end of the volume. Markov Processes and Applications Algorithms, Networks, Genome and Finance E´tienne Pardoux Laboratoire d’Analyse, Topologie, Probabilite´s Centre de Mathe´matiques et d’Informatique Universite´ de Provence, Marseille, France. A John Wiley and Sons, Ltd., Publication ThisworkisintheWiley-DunodSeriesco-publishedbetweenDunodandJohnWiley&Sons,Ltd. ThisworkisintheWiley-DunodSeriesco-publishedbetweenDunodandJohnWiley&Sons,Ltd. Thiseditionfirstpublished2008 2008JohnWiley&SonsLtd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynot beavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrand namesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregistered trademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentioned inthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothe subjectmattercovered.Itissoldontheunderstandingthatthepublisherisnotengagedinrendering professionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetent professionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Pardoux,E.(Etienne),1947- Markovprocessesandapplications:algorithms,networks,genome,andfinance/EtiennePardoux. p.cm.–(Wileyseriesinprobabilityandstatistics) Includesbibliographicalreferencesandindex. ISBN978-0-470-77271-3(cloth) 1.Markovprocesses.I.Title. QA274.7.P3752008 519.2(cid:1)33–dc22 2008043729 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-470-77271-3 Typesetin10/12ptTimesbyLaserwordsPrivateLimited,Chennai,India PrintedandboundinGreatBritainbyTJInternational,Padstow,Cornwall Contents Preface xi 1 Simulations and the Monte Carlo method 1 1.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Simulation of random variables . . . . . . . . . . . . . . . . . . . 5 1.4 Variance reduction techniques . . . . . . . . . . . . . . . . . . . . 9 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Markov chains 17 2.1 Definitions and elementary properties . . . . . . . . . . . . . . . . 17 2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Random walk in E =Zd . . . . . . . . . . . . . . . . . . 21 2.2.2 Bienayme´–Galton–Watson process . . . . . . . . . . . . . 21 2.2.3 A discrete time queue . . . . . . . . . . . . . . . . . . . . 22 2.3 Strong Markov property . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Recurrent and transient states . . . . . . . . . . . . . . . . . . . . 24 2.5 The irreducible and recurrent case . . . . . . . . . . . . . . . . . . 27 2.6 The aperiodic case . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7 Reversible Markov chain . . . . . . . . . . . . . . . . . . . . . . . 38 2.8 Rate of convergence to equilibrium . . . . . . . . . . . . . . . . . 39 2.8.1 The reversible finite state case . . . . . . . . . . . . . . . . 39 2.8.2 The general case . . . . . . . . . . . . . . . . . . . . . . . 42 2.9 Statistics of Markov chains. . . . . . . . . . . . . . . . . . . . . . 42 2.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 Stochastic algorithms 57 3.1 Markov chain Monte Carlo. . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 An application . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.2 The Ising model . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.3 Bayesian analysis of images . . . . . . . . . . . . . . . . . 63 3.1.4 Heated chains. . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2 Simulation of the invariant probability . . . . . . . . . . . . . . . 64 3.2.1 Perfect simulation . . . . . . . . . . . . . . . . . . . . . . 65 vi CONTENTS 3.2.2 Coupling from the past . . . . . . . . . . . . . . . . . . . 68 3.3 Rate of convergence towards the invariant probability . . . . . . . 70 3.4 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Markov chains and the genome 77 4.1 Reading DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1.1 CpG islands . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.2 Detection of the genes in a prokaryotic genome . . . . . . 79 4.2 The i.i.d. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 The Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Application to CpG islands . . . . . . . . . . . . . . . . . 80 4.3.2 Search for genes in a prokaryotic genome . . . . . . . . . 81 4.3.3 Statistics of Markov chains Mk . . . . . . . . . . . . . . . 82 4.3.4 Phased Markov chains . . . . . . . . . . . . . . . . . . . . 82 4.3.5 Locally homogeneous Markov chains . . . . . . . . . . . . 82 4.4 Hidden Markov models. . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.1 Computation of the likelihood . . . . . . . . . . . . . . . . 85 4.4.2 The Viterbi algorithm . . . . . . . . . . . . . . . . . . . . 86 4.4.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . 87 4.5 Hidden semi-Markov model . . . . . . . . . . . . . . . . . . . . . 92 4.5.1 Limitations of the hidden Markov model . . . . . . . . . . 92 4.5.2 What is a semi-Markov chain? . . . . . . . . . . . . . . . 92 4.5.3 The hidden semi-Markov model . . . . . . . . . . . . . . . 93 4.5.4 The semi-Markov Viterbi algorithm . . . . . . . . . . . . . 94 4.5.5 Search for genes in a prokaryotic genome . . . . . . . . . 95 4.6 Alignment of two sequences . . . . . . . . . . . . . . . . . . . . . 97 4.6.1 The Needleman–Wunsch algorithm . . . . . . . . . . . . . 98 4.6.2 Hidden Markov model alignment algorithm . . . . . . . . 99 4.6.3 A posteriori probability distribution of the alignment . . . 102 4.6.4 A posteriori probability of a given match . . . . . . . . . . 104 4.7 A multiple alignment algorithm . . . . . . . . . . . . . . . . . . . 105 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 Control and filtering of Markov chains 109 5.1 Deterministic optimal control . . . . . . . . . . . . . . . . . . . . 109 5.2 Control of Markov chains . . . . . . . . . . . . . . . . . . . . . . 111 5.3 Linear quadratic optimal control . . . . . . . . . . . . . . . . . . . 111 5.4 Filtering of Markov chains . . . . . . . . . . . . . . . . . . . . . . 113 5.5 The Kalman–Bucy filter . . . . . . . . . . . . . . . . . . . . . . . 115 5.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.5.2 Solution of the filtering problem . . . . . . . . . . . . . . 116 5.6 Linear–quadratic control with partial observation. . . . . . . . . . 120 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 CONTENTS vii 6 The Poisson process 123 6.1 Point processes and counting processes . . . . . . . . . . . . . . . 123 6.2 The Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 The Markov property . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.4 Large time behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7 Jump Markov processes 135 7.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2 Infinitesimal generator . . . . . . . . . . . . . . . . . . . . . . . . 139 7.3 The strong Markov property . . . . . . . . . . . . . . . . . . . . . 142 7.4 Embedded Markov chain . . . . . . . . . . . . . . . . . . . . . . . 144 7.5 Recurrent and transient states . . . . . . . . . . . . . . . . . . . . 147 7.6 The irreducible recurrent case . . . . . . . . . . . . . . . . . . . . 148 7.7 Reversibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.8 Markov models of evolution and phylogeny . . . . . . . . . . . . 154 7.8.1 Models of evolution . . . . . . . . . . . . . . . . . . . . . 156 7.8.2 Likelihood methods in phylogeny . . . . . . . . . . . . . . 160 7.8.3 The Bayesian approach to phylogeny . . . . . . . . . . . . 163 7.9 Application to discretized partial differential equations . . . . . . . 166 7.10 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8 Queues and networks 179 8.1 M/M/1 queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.2 M/M/1/K queue. . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.3 M/M/s queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.4 M/M/s/s queue . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 8.5 Repair shop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.6 Queues in series . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.7 M/G/∞ queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.8 M/G/1 queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.8.1 An embedded chain . . . . . . . . . . . . . . . . . . . . . 187 8.8.2 The positive recurrent case . . . . . . . . . . . . . . . . . 188 8.9 Open Jackson network . . . . . . . . . . . . . . . . . . . . . . . . 190 8.10 Closed Jackson network . . . . . . . . . . . . . . . . . . . . . . . 194 8.11 Telephone network . . . . . . . . . . . . . . . . . . . . . . . . . . 196 8.12 Kelly networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.12.1 Single queue . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.12.2 Multi-class network . . . . . . . . . . . . . . . . . . . . . 202 8.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 9 Introduction to mathematical finance 205 9.1 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . 205 9.1.1 Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Description:
This well-written book provides a clear and accessible treatment of the theory of discrete and continuous-time Markov chains, with an emphasis towards applications. The mathematical treatment is precise and rigorous without superfluous details, and the results are immediately illustrated in illumina
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.