Markov Processes and Applications Algorithms, Networks, Genome and Finance E´tienne Pardoux Laboratoire d’Analyse, Topologie, Probabilite´s Centre de Mathe´matiques et d’Informatique Universite´ de Provence, Marseille, France. A John Wiley and Sons, Ltd., Publication ThisworkisintheWiley-DunodSeriesco-publishedbetweenDunodandJohnWiley&Sons,Ltd. Markov Processes and Applications WILEY SERIES IN PROBABILITY AND STATISTICS Established by WALTER A. SHEWHART and SAMUEL S. WILKS Editors: DavidJ.Balding,NoelA.C.Cressie,GarrettM.Fitzmaurice, IainM.Johnstone,GeertMolenberghs,DavidW.Scott,AdrianF.M.Smith, RueyS.Tsay,SanfordWeisberg Editors Emeriti: VicBarnett,J.StuartHunter,JozefL.Teugels A complete list of titles in this series appears at the end of the volume. Markov Processes and Applications Algorithms, Networks, Genome and Finance E´tienne Pardoux Laboratoire d’Analyse, Topologie, Probabilite´s Centre de Mathe´matiques et d’Informatique Universite´ de Provence, Marseille, France. A John Wiley and Sons, Ltd., Publication ThisworkisintheWiley-DunodSeriesco-publishedbetweenDunodandJohnWiley&Sons,Ltd. ThisworkisintheWiley-DunodSeriesco-publishedbetweenDunodandJohnWiley&Sons,Ltd. Thiseditionfirstpublished2008 2008JohnWiley&SonsLtd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynot beavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrand namesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregistered trademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentioned inthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritativeinformationinregardtothe subjectmattercovered.Itissoldontheunderstandingthatthepublisherisnotengagedinrendering professionalservices.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofacompetent professionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Pardoux,E.(Etienne),1947- Markovprocessesandapplications:algorithms,networks,genome,andfinance/EtiennePardoux. p.cm.–(Wileyseriesinprobabilityandstatistics) Includesbibliographicalreferencesandindex. ISBN978-0-470-77271-3(cloth) 1.Markovprocesses.I.Title. QA274.7.P3752008 519.2(cid:1)33–dc22 2008043729 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-0-470-77271-3 Typesetin10/12ptTimesbyLaserwordsPrivateLimited,Chennai,India PrintedandboundinGreatBritainbyTJInternational,Padstow,Cornwall Contents Preface xi 1 Simulations and the Monte Carlo method 1 1.1 Description of the method . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Simulation of random variables . . . . . . . . . . . . . . . . . . . 5 1.4 Variance reduction techniques . . . . . . . . . . . . . . . . . . . . 9 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Markov chains 17 2.1 Definitions and elementary properties . . . . . . . . . . . . . . . . 17 2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Random walk in E =Zd . . . . . . . . . . . . . . . . . . 21 2.2.2 Bienayme´–Galton–Watson process . . . . . . . . . . . . . 21 2.2.3 A discrete time queue . . . . . . . . . . . . . . . . . . . . 22 2.3 Strong Markov property . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Recurrent and transient states . . . . . . . . . . . . . . . . . . . . 24 2.5 The irreducible and recurrent case . . . . . . . . . . . . . . . . . . 27 2.6 The aperiodic case . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7 Reversible Markov chain . . . . . . . . . . . . . . . . . . . . . . . 38 2.8 Rate of convergence to equilibrium . . . . . . . . . . . . . . . . . 39 2.8.1 The reversible finite state case . . . . . . . . . . . . . . . . 39 2.8.2 The general case . . . . . . . . . . . . . . . . . . . . . . . 42 2.9 Statistics of Markov chains. . . . . . . . . . . . . . . . . . . . . . 42 2.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 Stochastic algorithms 57 3.1 Markov chain Monte Carlo. . . . . . . . . . . . . . . . . . . . . . 57 3.1.1 An application . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.2 The Ising model . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.3 Bayesian analysis of images . . . . . . . . . . . . . . . . . 63 3.1.4 Heated chains. . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2 Simulation of the invariant probability . . . . . . . . . . . . . . . 64 3.2.1 Perfect simulation . . . . . . . . . . . . . . . . . . . . . . 65 vi CONTENTS 3.2.2 Coupling from the past . . . . . . . . . . . . . . . . . . . 68 3.3 Rate of convergence towards the invariant probability . . . . . . . 70 3.4 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Markov chains and the genome 77 4.1 Reading DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1.1 CpG islands . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.1.2 Detection of the genes in a prokaryotic genome . . . . . . 79 4.2 The i.i.d. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 The Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Application to CpG islands . . . . . . . . . . . . . . . . . 80 4.3.2 Search for genes in a prokaryotic genome . . . . . . . . . 81 4.3.3 Statistics of Markov chains Mk . . . . . . . . . . . . . . . 82 4.3.4 Phased Markov chains . . . . . . . . . . . . . . . . . . . . 82 4.3.5 Locally homogeneous Markov chains . . . . . . . . . . . . 82 4.4 Hidden Markov models. . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.1 Computation of the likelihood . . . . . . . . . . . . . . . . 85 4.4.2 The Viterbi algorithm . . . . . . . . . . . . . . . . . . . . 86 4.4.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . 87 4.5 Hidden semi-Markov model . . . . . . . . . . . . . . . . . . . . . 92 4.5.1 Limitations of the hidden Markov model . . . . . . . . . . 92 4.5.2 What is a semi-Markov chain? . . . . . . . . . . . . . . . 92 4.5.3 The hidden semi-Markov model . . . . . . . . . . . . . . . 93 4.5.4 The semi-Markov Viterbi algorithm . . . . . . . . . . . . . 94 4.5.5 Search for genes in a prokaryotic genome . . . . . . . . . 95 4.6 Alignment of two sequences . . . . . . . . . . . . . . . . . . . . . 97 4.6.1 The Needleman–Wunsch algorithm . . . . . . . . . . . . . 98 4.6.2 Hidden Markov model alignment algorithm . . . . . . . . 99 4.6.3 A posteriori probability distribution of the alignment . . . 102 4.6.4 A posteriori probability of a given match . . . . . . . . . . 104 4.7 A multiple alignment algorithm . . . . . . . . . . . . . . . . . . . 105 4.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 Control and filtering of Markov chains 109 5.1 Deterministic optimal control . . . . . . . . . . . . . . . . . . . . 109 5.2 Control of Markov chains . . . . . . . . . . . . . . . . . . . . . . 111 5.3 Linear quadratic optimal control . . . . . . . . . . . . . . . . . . . 111 5.4 Filtering of Markov chains . . . . . . . . . . . . . . . . . . . . . . 113 5.5 The Kalman–Bucy filter . . . . . . . . . . . . . . . . . . . . . . . 115 5.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.5.2 Solution of the filtering problem . . . . . . . . . . . . . . 116 5.6 Linear–quadratic control with partial observation. . . . . . . . . . 120 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 CONTENTS vii 6 The Poisson process 123 6.1 Point processes and counting processes . . . . . . . . . . . . . . . 123 6.2 The Poisson process . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 The Markov property . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.4 Large time behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7 Jump Markov processes 135 7.1 General facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2 Infinitesimal generator . . . . . . . . . . . . . . . . . . . . . . . . 139 7.3 The strong Markov property . . . . . . . . . . . . . . . . . . . . . 142 7.4 Embedded Markov chain . . . . . . . . . . . . . . . . . . . . . . . 144 7.5 Recurrent and transient states . . . . . . . . . . . . . . . . . . . . 147 7.6 The irreducible recurrent case . . . . . . . . . . . . . . . . . . . . 148 7.7 Reversibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.8 Markov models of evolution and phylogeny . . . . . . . . . . . . 154 7.8.1 Models of evolution . . . . . . . . . . . . . . . . . . . . . 156 7.8.2 Likelihood methods in phylogeny . . . . . . . . . . . . . . 160 7.8.3 The Bayesian approach to phylogeny . . . . . . . . . . . . 163 7.9 Application to discretized partial differential equations . . . . . . . 166 7.10 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 8 Queues and networks 179 8.1 M/M/1 queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.2 M/M/1/K queue. . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.3 M/M/s queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 8.4 M/M/s/s queue . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 8.5 Repair shop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.6 Queues in series . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.7 M/G/∞ queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 8.8 M/G/1 queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.8.1 An embedded chain . . . . . . . . . . . . . . . . . . . . . 187 8.8.2 The positive recurrent case . . . . . . . . . . . . . . . . . 188 8.9 Open Jackson network . . . . . . . . . . . . . . . . . . . . . . . . 190 8.10 Closed Jackson network . . . . . . . . . . . . . . . . . . . . . . . 194 8.11 Telephone network . . . . . . . . . . . . . . . . . . . . . . . . . . 196 8.12 Kelly networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.12.1 Single queue . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.12.2 Multi-class network . . . . . . . . . . . . . . . . . . . . . 202 8.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 9 Introduction to mathematical finance 205 9.1 Fundamental concepts . . . . . . . . . . . . . . . . . . . . . . . . 205 9.1.1 Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Description: