ebook img

Markov Chains and Decision Processes for Engineers and Managers PDF

488 Pages·2010·5.248 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Markov Chains and Decision Processes for Engineers and Managers

MARKOV CHAINS and DECISION PROCESSES ENGINEERS for and MANAGERS © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd ii 99//2233//22001100 99::1111::5500 PPMM © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd iiii 99//2233//22001100 99::1111::5511 PPMM MARKOV CHAINS and DECISION PROCESSES ENGINEERS for and MANAGERS Theodore J. Sheskin Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd iiiiii 99//2233//22001100 99::1111::5511 PPMM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20131021 International Standard Book Number-13: 978-1-4200-5112-4 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2011 by Taylor & Francis Group, LLC Contents Preface xi Author xiii Chapter 1 Markov Chain Structure and Models ..........................................1 1.1 Historical Note ......................................................................................1 1.2 States and Transitions ...........................................................................2 1.3 Model of the Weather ...........................................................................5 1.4 Random Walks ......................................................................................7 1.4.1 Barriers ......................................................................................8 1.4.1.1 Absorbing Barriers ...................................................8 1.4.1.2 Gambler’s Ruin .........................................................8 1.4.1.3 Refl ecting Barriers ....................................................9 1.4.2 Circular Random Walk ...........................................................9 1.5 Estimating Transition Probabilities ..................................................10 1.5.1 Conditioning on the Present State .......................................10 1.5.2 Conditioning on the Present and Previous States .............11 1.6 Multiple-Step Transition Probabilities .............................................12 1.7 State Probabilities after Multiple Steps ............................................15 1.8 Classifi cation of States ........................................................................19 1.9 Markov Chain Structure ....................................................................20 1.9.1 Unichain ..................................................................................20 1.9.1.1 Irreducible ...............................................................21 1.9.1.2 Reducible Unichain ................................................23 1.9.2 Multichain ...............................................................................24 1.9.3 Aggregated Canonical Form of the Transition Matrix .....24 1.10 Markov Chain Models ........................................................................25 1.10.1 Unichain ..................................................................................26 1.10.1.1 Irreducible ...............................................................26 1.10.1.2 Reducible Unichain ................................................43 1.10.2 Reducible Multichain ............................................................48 1.10.2.1 Absorbing Markov Chain .....................................49 1.10.2.2 Eight-State Multichain Model of a Production Process .................................................51 Problems ..........................................................................................................54 References .......................................................................................................65 Chapter 2 Regular Markov Chains ...............................................................67 2.1 Steady-State Probabilities ...................................................................67 2.1.1 Calculating Steady-State Probabilities for a Generic Two-State Markov Chain ......................................................72 v © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd vv 99//2233//22001100 99::1111::5511 PPMM vi Contents 2.1.2 Calculating Steady-State Probabilities for a Four- State Model of Weather .........................................................74 2.1.3 Steady-State Probabilities for Four-State Model of Inventory System ........................................................76 2.1.4 Steady-State Probabilities for Four-State Model of Component Replacement ......................................................76 2.2 First Passage to a Target State............................................................77 2.2.1 Probability of First Passage in n Steps ................................77 2.2.2 Mean First Passage Times .....................................................82 2.2.2.1 MFPTs for a Five-State Markov Chain ................82 2.2.2.2 MFPTs for a Four-State Model of Component Replacement ......................................86 2.2.2.3 MFPTs for a Four-State Model of Weather .........87 2.2.3 Mean Recurrence Time .........................................................88 2.2.3.1 Mean Recurrence Time for a Five-State Markov Chain .........................................................88 2.2.3.2 Mean Recurrence Times for a Four-State Model of Component Replacement .....................89 2.2.3.3 O ptional Insight: Mean Recurrence Time as the Reciprocal of the Steady-State Probability for a Two-State Markov Chain .........89 Problems ..........................................................................................................91 References .......................................................................................................95 Chapter 3 Reducible Markov Chains ............................................................97 3.1 Canonical Form of the Transition Matrix ........................................97 3.1.1 Unichain ..................................................................................97 3.1.2 Multichain ...............................................................................99 3.1.3 Aggregation of the Transition Matrix in Canonical Form .......................................................................................100 3.2 The Fundamental Matrix .................................................................102 3.2.1 Defi nition of the Fundamental Matrix .............................102 3.2.2 Mean Time in a Particular Transient State .......................103 3.2.3 Mean Time in All Transient States ....................................105 3.2.4 Absorbing Multichain Model of Patient Flow in a Hospital .................................................................................106 3.3 Passage to a Target State ..................................................................108 3.3.1 Mean First Passage Times in a Regular Markov Chain Revisited ....................................................................108 3.3.2 Probability of First Passage in n Steps ..............................110 3.3.2.1 Reducible Unichain ..............................................110 3.3.2.2 Reducible Multichain ...........................................118 3.3.3 Probability of Eventual Passage to a Recurrent State .....122 3.3.3.1 Reducible Unichain ..............................................125 3.3.3.2 Reducible Multichain ...........................................130 © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd vvii 99//2233//22001100 99::1111::5511 PPMM Contents vii 3.4 Eventual Passage to a Closed Set within a Reducible Multichain ..........................................................................................138 3.4.1 Method One: Replacing Recurrent Sets with Absorbing States and Using the Fundamental Matrix ...138 3.4.1.1 Five-State Reducible Multichain ........................138 3.4.1.2 Multichain Model of an Eight-State Serial Production Process ...............................................140 3.4.2 Method Two: Direct Calculation without Using the Fundamental Matrix............................................................142 3.5 Limiting Transition Probability Matrix .........................................143 3.5.1 Recurrent Multichain ..........................................................143 3.5.2 Absorbing Markov Chain ...................................................145 3.5.3 Absorbing Markov Chain Model of Patient Flow in a Hospital .................................................................................146 3.5.4 Reducible Unichain .............................................................147 3.5.4.1 Reducible Four-State Unichain ...........................149 3.5.4.2 Reducible Unichain Model of Machine Maintenance ..........................................................149 3.5.5 Reducible Multichain ..........................................................150 3.5.5.1 Reducible Five-State Multichain ........................152 3.5.5.2 Reducible Multichain Model of an Eight - State Serial Production Process ...............153 3.5.5.3 Conditional Mean Time to Absorption .............156 Problems ........................................................................................................157 References .....................................................................................................163 Chapter 4 A Markov Chain with Rewards (MCR) ...................................165 4.1 Rewards ..............................................................................................165 4.1.1 Planning Horizon ................................................................165 4.1.2 Reward Vector ......................................................................166 4.2 Undiscounted Rewards ....................................................................168 4.2.1 MCR Chain Structure ..........................................................168 4.2.2 A Recurrent MCR over a Finite Planning Horizon ........169 4.2.2.1 An MCR Model of Monthly Sales ......................169 4.2.2.2 Value Iteration over a Fixed Planning Horizon ..................................................................172 4.2.2.3 Lengthening a Finite Planning Horizon ...........179 4.2.2.4 Numbering the Time Periods Forward .............182 4.2.3 A Recurrent MCR over an Infi nite Planning Horizon ...182 4.2.3.1 Expected Average Reward or Gain ....................183 4.2.3.2 Value Determination Equations (VDEs) ...........185 4.2.3.3 Value Iteration .......................................................190 4.2.3.4 Examples of Recurrent MCR Models ................194 4.2.4 A Unichain MCR ..................................................................201 4.2.4.1 Expected Average Reward or Gain ....................201 © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd vviiii 99//2233//22001100 99::1111::5511 PPMM viii Contents 4.2.4.2 Value Determination Equations .........................206 4.2.4.3 Solution by Value Iteration of Unichain MCR Model of Machine Maintenance under Modifi ed Policy of Doing Nothing in State 3 .....................................................................211 4.2.4.4 Expected Total Reward before Passage to a Closed Set ..............................................................214 4.2.4.5 Value Iteration over a Finite Planning Horizon ..................................................................218 4.2.5 A Multichain MCR ..............................................................220 4.2.5.1 An Eight-State Multichain MCR Model of a Production Process ...............................................221 4.2.5.2 Expected Average Reward or Gain ....................224 4.2.5.3 Reward Evaluation Equations ............................227 4.2.5.4 Expected Total Reward before Passage to a Closed Set ..............................................................239 4.2.5.5 Value Iteration over a Finite Planning Horizon ..................................................................243 4.3 Discounted Rewards ........................................................................245 4.3.1 Time Value of Money...........................................................245 4.3.2 Value Iteration over a Finite Planning Horizon ..............246 4.3.2.1 Value Iteration Equation ......................................246 4.3.2.2 Value Iteration for Discounted MCR Model of Monthly Sales ...................................................249 4.3.3 An Infi nite Planning Horizon ............................................251 4.3.3.1 VDEs for Expected Total Discounted Rewards .................................................................251 4.3.3.2 Value Iteration for Expected Total Discounted Rewards ............................................260 Problems ........................................................................................................263 References .....................................................................................................270 Chapter 5 A Markov Decision Process (MDP) ..........................................271 5.1 An Undiscounted MDP ....................................................................271 5.1.1 MDP Chain Structure..........................................................271 5.1.2 A Recurrent MDP ................................................................272 5.1.2.1 A Recurrent MDP Model of Monthly Sales ......272 5.1.2.2 Value Iteration over a Finite Planning Horizon ..................................................................275 5.1.2.3 An Infi nite Planning Horizon ............................284 5.1.3 A Unichain MDP ..................................................................315 5.1.3.1 Policy Iteration (PI) ...............................................315 5.1.3.2 Linear Programming ...........................................323 5.1.3.3 Examples of Unichain MDP Models .................329 5.1.4 A Multichain MDP ..............................................................350 © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd vviiiiii 99//2233//22001100 99::1111::5511 PPMM Contents ix 5.1.4.1 Multichain Model of a Flexible Production System ....................................................................350 5.1.4.2 PI for a Multichain MDP .....................................352 5.1.4.3 Linear Programming ...........................................361 5.1.4.4 A Multichain MDP Model of Machine Maintenance ..........................................................368 5.2 A Discounted MDP ...........................................................................374 5.2.1 Value Iteration over a Finite Planning Horizon ..............374 5.2.1.1 Value Iteration Equation ......................................374 5.2.1.2 Value Iteration for Discounted MDP Model of Monthly Sales ...................................................374 5.2.2 An Infi nite Planning Horizon ............................................382 5.2.2.1 Value Iteration .......................................................383 5.2.2.2 Policy Iteration ......................................................385 5.2.2.3 LP for a Discounted MDP ...................................396 5.2.2.4 Examples of Discounted MDP Models .............404 Problems ........................................................................................................413 References .....................................................................................................422 Chapter 6 Special Topics: State Reduction and Hidden Markov Chains .............................................................................................423 6.1 State Reduction ..................................................................................423 6.1.1 Markov Chain Partitioning Algorithm for Computing Steady-State Probabilities ..............................424 6.1.1.1 Matrix Reduction of a Partitioned Markov Chain ......................................................................424 6.1.1.2 Optional Insight: Informal Justifi cation of the Formula for Matrix Reduction .....................426 6.1.1.3 Optional Insight: Informal Derivation of the MCPA .....................................................................427 6.1.1.4 Markov Chain Partitioning Algorithm .............431 6.1.1.5 Using the MCPA to Compute the Steady-State Probabilities for a Four-State Markov Chain .......................................................432 6.1.1.6 Optional Insight: Matrix Reduction and Gaussian Elimination ..........................................433 6.1.2 Mean First Passage Times ...................................................435 6.1.2.1 Forming the Augmented Matrix ........................435 6.1.2.2 State Reduction Algorithm for Computing MFPTs ....................................................................436 6.1.2.3 Using State Reduction to Compute MFPTs for a Five-State Markov Chain ............................437 6.1.3 Absorption Probabilities .....................................................439 6.1.3.1 Forming the Augmented Matrix ........................439 © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd iixx 99//2233//22001100 99::1111::5511 PPMM xx Contents 6.1.3.2 State Reduction Algorithm for Computing Absorption Probabilities .....................................440 6.1.3.3 Using State Reduction to Compute Absorption Probabilities for an Absorbing Multichain Model of Patient Flow in a Hospital ..................................................................441 6.2 An Introduction to Hidden Markov Chains .................................443 6.2.1 HMM of the Weather ..........................................................444 6.2.2 Generating an Observation Sequence ...............................446 6.2.3 Parameters of an HMM .......................................................447 6.2.4 Three Basic Problems for HMMs ......................................447 6.2.4.1 Solution to Problem 1 ...........................................448 6.2.4.2 Solution to Problem 2 ...........................................455 Problems ........................................................................................................460 References .....................................................................................................462 Index 463 © 2011 by Taylor & Francis Group, LLC 5511111133__CC000000..iinndddd xx 99//2233//22001100 99::1111::5511 PPMM

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.