MARKET-SHARE ANALYSIS International Series in Quantitative Marketing Editor: Jehoshua Eliashberg The Wharton School University of Pennsylvania Philadelphia, Pennsylvania, U.S.A. Market-Share Analysis Evaluating Competitive Marketing Effectiveness Lee G. Cooper Anderson Graduate School of Management University of California, Los Angeles Masao Nakanishi School of Business Administration Kwansei Gakuin University Nishinomiya-shi, JAPAN Kluwer Academic Publishers Boston Dordrecht London Distributors for North America: Kluwer Academic Publishers 101 Philip Drive, Assinippi Park Norwell, Massachusetts 02061 USA Distributors for the UK and Ireland: Kluwer Academic Publishers Falcon House, Queen Square Lancaster LA1 1RN, UNITED KINGDOM Distributors for all other countries: Kluwer Academic Publishers Group Distribution Centre Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Library of Congress Cataloging-in-PublicationData Cooper, Lee G. Market-share analysis: evaluating competitive marketing effective- ness / Lee G. Cooper, Masao Nakanishi. p. cm. – – (International series in quantitative marketing) Bibliography: p. Includes index. ISBN 0–89838–278–5 1. Marketing – – Decision making – – Mathematical models. I. Nakanishi, Masao, 1936– . II. Title. III. Series. HF5415. 135.C66 1988 658.8‘02 – – dc 19 88–12092 CIP Original Copyright (cid:13)c 1988 by Kluwer Academic Publishers Copyright (cid:13)c 2010 by Lee G. Cooper All rights reserved. Printed in the United States of America Contents List of Tables x List of Figures xii Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Scope and Objectives 1 1.1 Interest in Market-Share Analysis . . . . . . . . . . . . . . 1 1.2 Need for a Analytical Framework . . . . . . . . . . . . . . 5 1.3 The Process of Market-Share Analysis . . . . . . . . . . . 10 1.3.1 Stage 1: Specification of Models . . . . . . . . . . 11 1.3.2 Stage 2: Data Collection and Review . . . . . . . . 13 1.3.3 Stage 3: Analysis . . . . . . . . . . . . . . . . . . . 14 1.3.4 Stage 4: Strategy and Planning . . . . . . . . . . . 14 1.3.5 Stage 5: Follow-Up . . . . . . . . . . . . . . . . . . 15 2 Understanding Market Shares 17 2.1 Market Shares: Definitions. . . . . . . . . . . . . . . . . . 17 2.2 Defining Industry Sales . . . . . . . . . . . . . . . . . . . . 19 2.3 Kotler’s Fundamental Theorem . . . . . . . . . . . . . . . 21 2.3.1 A Numerical Example . . . . . . . . . . . . . . . . 23 2.4 *Market-Share Theorem . . . . . . . . . . . . . . . . . . . 24 2.5 Alternative Models of Market Share . . . . . . . . . . . . 26 2.6 Market-Share Elasticities . . . . . . . . . . . . . . . . . . 31 2.7 Sales-Volume Elasticities . . . . . . . . . . . . . . . . . . . 36 2.8 *Market Shares and Choice Probabilities . . . . . . . . . . 38 2.9 Appendices for Chapter 2 . . . . . . . . . . . . . . . . . . 44 2.9.1 *Calculus of Market-Share Elasticities . . . . . . . 44 2.9.2 *Properties of Market-Share Elasticities . . . . . . 45 2.9.3 *Individual Choice Probabilities . . . . . . . . . . 46 2.9.4 *Multivariate Independent Gamma Function . . . 52 v vi CONTENTS 3 Describing Markets and Competition 55 3.1 Market and Competitive Structure . . . . . . . . . . . . . 55 3.2 Asymmetries in Market and Competition . . . . . . . . . 56 3.3 Differential Effectiveness . . . . . . . . . . . . . . . . . . . 57 3.4 Differential Cross Elasticities . . . . . . . . . . . . . . . . 59 3.5 Properties of Fully Extended Models . . . . . . . . . . . . 62 3.6 Determining Competitive Structures . . . . . . . . . . . . 65 3.7 Hierarchies of Market Segments . . . . . . . . . . . . . . . 68 3.8 Distinctiveness of Marketing Activities . . . . . . . . . . . 69 3.9 Time-Series Issues . . . . . . . . . . . . . . . . . . . . . . 78 3.10 Appendix for Chapter 3 . . . . . . . . . . . . . . . . . . . 84 3.10.1 *Log-Linear Time-Series Model . . . . . . . . . . . 84 4 Data Collection 87 4.1 The Accuracy of Scanner Data . . . . . . . . . . . . . . . 87 4.2 Issues in Aggregation. . . . . . . . . . . . . . . . . . . . . 89 4.3 National Tracking Data . . . . . . . . . . . . . . . . . . . 93 4.3.1 Store-Level Scanner Data . . . . . . . . . . . . . . 93 4.3.2 Store Audits . . . . . . . . . . . . . . . . . . . . . 95 4.3.3 Household Scanner Panels . . . . . . . . . . . . . . 96 4.3.4 Other Data Sources . . . . . . . . . . . . . . . . . 97 4.4 Market Information Systems. . . . . . . . . . . . . . . . . 98 5 Parameter Estimation 103 5.1 Calibrating Attraction Models. . . . . . . . . . . . . . . . 103 5.1.1 Maximum-Likelihood Estimation . . . . . . . . . . 104 5.1.2 Log-Linear Estimation . . . . . . . . . . . . . . . . 106 5.2 Log-Linear Regression Techniques . . . . . . . . . . . . . 108 5.2.1 Organization of Data for Estimation . . . . . . . . 110 5.2.2 Reading Regression-Analysis Outputs . . . . . . . 114 5.2.3 The Analysis-of-Covariance Representation . . . . 118 5.3 Properties of the Error Term . . . . . . . . . . . . . . . . 119 5.3.1 Assumptions on the Specification-Error Term . . . 120 5.3.2 Survey Data . . . . . . . . . . . . . . . . . . . . . 120 5.3.3 POS Data . . . . . . . . . . . . . . . . . . . . . . . 123 5.4 *Generalized Least-Squares Estimation. . . . . . . . . . . 125 5.4.1 Application of GLS to the Margarine Data . . . . 126 5.5 Estimation of Differential-EffectsModels . . . . . . . . . . 128 5.6 Collinearityin Differential-Effects Models . . . . . . . . . 134 5.6.1 Three Differential-EffectsModels . . . . . . . . . . 137 CONTENTS vii 5.6.2 Within-Brand Effects . . . . . . . . . . . . . . . . 139 5.6.3 Remedies . . . . . . . . . . . . . . . . . . . . . . . 141 5.7 Estimation of Cross-Effects Models . . . . . . . . . . . . . 143 5.8 A Multivariate MCI Regression Model . . . . . . . . . . . 148 5.9 Estimation of Category-Volume Models . . . . . . . . . . 149 5.10 Estimation of Share-Elasticities . . . . . . . . . . . . . . . 152 5.11 Problems with Zero Market Shares . . . . . . . . . . . . . 153 5.12 The Coffee-Market Example . . . . . . . . . . . . . . . . . 156 5.12.1 The Market-Share Model . . . . . . . . . . . . . . 156 5.12.2 The Category-Volume Model . . . . . . . . . . . . 165 5.12.3 Combining Share and Category Volume . . . . . . 168 5.13 Large-Scale Competitive Analysis . . . . . . . . . . . . . . 168 5.13.1 How Large Is Too Large? . . . . . . . . . . . . . . 170 5.13.2 Is BLUE Always Best? . . . . . . . . . . . . . . . . 172 5.14 Appendix for Chapter 5 . . . . . . . . . . . . . . . . . . . 175 5.14.1 Generalized Least Squares Estimation . . . . . . . 175 6 Competitive Maps 177 6.1 *Asymmetric Three-Mode Factor Analysis . . . . . . . . . 182 6.2 Portraying the Coffee Market . . . . . . . . . . . . . . . . 185 6.2.1 Signalling Competitive Change . . . . . . . . . . . 187 6.2.2 Competitive Maps: The Structure Over Brands . . 193 6.3 *Elasticitiesand Market Structure . . . . . . . . . . . . . 201 6.4 *Interpretive Aids for Competitive Maps . . . . . . . . . . 204 6.5 *Appendix for Chapter 6 . . . . . . . . . . . . . . . . . . 211 7 Decision-Support Systems 219 7.1 CASPER . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.2 Using HISTORY . . . . . . . . . . . . . . . . . . . . . . . 223 7.3 Simulating Static Occasions . . . . . . . . . . . . . . . . . 231 7.4 The Assumptions Underlying Planning . . . . . . . . . . . 249 7.5 What If There Were No Experts? . . . . . . . . . . . . . . 252 7.6 Dynamic Simulations . . . . . . . . . . . . . . . . . . . . . 253 7.7 Management Decision Making . . . . . . . . . . . . . . . . 256 8 A Research Agenda 259 8.1 Estimation Problems . . . . . . . . . . . . . . . . . . . . . 259 8.1.1 Missing Data . . . . . . . . . . . . . . . . . . . . . 259 8.1.2 Constrained Parameter Estimation . . . . . . . . . 260 8.1.3 Long-Run Effects . . . . . . . . . . . . . . . . . . . 260 viii CONTENTS 8.2 Issues in Decision Support . . . . . . . . . . . . . . . . . . 261 8.2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . 261 8.2.2 Expert Systems . . . . . . . . . . . . . . . . . . . . 262 8.3 The Integration of Panel Data. . . . . . . . . . . . . . . . 262 8.4 Market-Basket Models . . . . . . . . . . . . . . . . . . . . 264 Index 272 List of Tables 2.1 Numerical Example of Kotler’s Fundamental Theorem . . 24 2.2 Numerical Example — The Effect of Reducing Price . . . 24 2.3 Effect of Correlation Between Purchase Frequencies and Choice Probabilities . . . . . . . . . . . . . . . . . . . . . 41 2.4 Relations Between Market Shares and Choice Probabilities 43 3.1 Numerical Example of Cross Elasticities for MCI Model . 60 3.2 Direct and Cross Elasticities for Seven Brands . . . . . . . 66 3.3 Interlocking and Nested Brand Groups . . . . . . . . . . . 67 4.1 Aggregating Market Shares and Causal Conditions . . . . 90 5.1 POS Data Example (Margarine) . . . . . . . . . . . . . . 112 5.2 Data Set for Estimation . . . . . . . . . . . . . . . . . . . 113 5.3 Regression Results for MCI Equation (5.8). . . . . . . . . 115 5.4 Regression Results for MNL Equation (5.9) . . . . . . . . 117 5.5 GLS Estimates for Table 5.3. . . . . . . . . . . . . . . . . 127 5.6 Data Set for Differential-EffectsModel . . . . . . . . . . . 131 5.7 Regression Results for Differential-EffectsModel (MCI) . 132 5.8 Log-Centered Differential-Effects Data . . . . . . . . . . . 133 5.9 Hypothetical Data for Differential-EffectsModel . . . . . 134 5.10 Condition Indices Australian Household-Products Example143 5.11 Regression Results for Cross-Effects Model (MCI) . . . . 146 5.12 Coffee Data — Average Prices and Market Shares . . . . 157 5.13 Regression Results for Cross-Effects Model (MCI) . . . . 159 5.14 Regression Results for Category-Volume Model . . . . . . 167 5.15 Computer Resources for Two Applications . . . . . . . . . 171 5.16 Summary of BLUE Parameters — IRI Data . . . . . . . . 173 5.17 Summary of BLUE Parameters — Nielsen Data . . . . . . 174 ix x LIST OF TABLES 6.1 Average Market-Share Elasticities of Price . . . . . . . . . 186 6.2 Coordinates of the Idealized Competitive Conditions . . . 193 6.3 Common Scaling Space . . . . . . . . . . . . . . . . . . . 213 6.4 Dimensionalityof Common Scaling Space . . . . . . . . . 214 6.5 The Core Matrix for the Coffee-Market Example . . . . . 216 6.6 Joint-Space Coefficients for Chain-Week Factors. . . . . . 217 6.7 Elasticities for Idealized Competitive Conditions . . . . . 219 7.1 Default Price and Promotion Table . . . . . . . . . . . . . 232 7.2 Default Costs . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.3 Default Discounts Offered to Retailer by Manufacturer . . 234
Description: