ebook img

MARKET-SHARE ANALYSIS - UCLA Anderson School of Management PDF

290 Pages·2010·2.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MARKET-SHARE ANALYSIS - UCLA Anderson School of Management

MARKET-SHARE ANALYSIS International Series in Quantitative Marketing Editor: Jehoshua Eliashberg The Wharton School University of Pennsylvania Philadelphia, Pennsylvania, U.S.A. Market-Share Analysis Evaluating Competitive Marketing Effectiveness Lee G. Cooper Anderson Graduate School of Management University of California, Los Angeles Masao Nakanishi School of Business Administration Kwansei Gakuin University Nishinomiya-shi, JAPAN Kluwer Academic Publishers Boston Dordrecht London Distributors for North America: Kluwer Academic Publishers 101 Philip Drive, Assinippi Park Norwell, Massachusetts 02061 USA Distributors for the UK and Ireland: Kluwer Academic Publishers Falcon House, Queen Square Lancaster LA1 1RN, UNITED KINGDOM Distributors for all other countries: Kluwer Academic Publishers Group Distribution Centre Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Library of Congress Cataloging-in-PublicationData Cooper, Lee G. Market-share analysis: evaluating competitive marketing effective- ness / Lee G. Cooper, Masao Nakanishi. p. cm. – – (International series in quantitative marketing) Bibliography: p. Includes index. ISBN 0–89838–278–5 1. Marketing – – Decision making – – Mathematical models. I. Nakanishi, Masao, 1936– . II. Title. III. Series. HF5415. 135.C66 1988 658.8‘02 – – dc 19 88–12092 CIP Original Copyright (cid:13)c 1988 by Kluwer Academic Publishers Copyright (cid:13)c 2010 by Lee G. Cooper All rights reserved. Printed in the United States of America Contents List of Tables x List of Figures xii Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Scope and Objectives 1 1.1 Interest in Market-Share Analysis . . . . . . . . . . . . . . 1 1.2 Need for a Analytical Framework . . . . . . . . . . . . . . 5 1.3 The Process of Market-Share Analysis . . . . . . . . . . . 10 1.3.1 Stage 1: Specification of Models . . . . . . . . . . 11 1.3.2 Stage 2: Data Collection and Review . . . . . . . . 13 1.3.3 Stage 3: Analysis . . . . . . . . . . . . . . . . . . . 14 1.3.4 Stage 4: Strategy and Planning . . . . . . . . . . . 14 1.3.5 Stage 5: Follow-Up . . . . . . . . . . . . . . . . . . 15 2 Understanding Market Shares 17 2.1 Market Shares: Definitions. . . . . . . . . . . . . . . . . . 17 2.2 Defining Industry Sales . . . . . . . . . . . . . . . . . . . . 19 2.3 Kotler’s Fundamental Theorem . . . . . . . . . . . . . . . 21 2.3.1 A Numerical Example . . . . . . . . . . . . . . . . 23 2.4 *Market-Share Theorem . . . . . . . . . . . . . . . . . . . 24 2.5 Alternative Models of Market Share . . . . . . . . . . . . 26 2.6 Market-Share Elasticities . . . . . . . . . . . . . . . . . . 31 2.7 Sales-Volume Elasticities . . . . . . . . . . . . . . . . . . . 36 2.8 *Market Shares and Choice Probabilities . . . . . . . . . . 38 2.9 Appendices for Chapter 2 . . . . . . . . . . . . . . . . . . 44 2.9.1 *Calculus of Market-Share Elasticities . . . . . . . 44 2.9.2 *Properties of Market-Share Elasticities . . . . . . 45 2.9.3 *Individual Choice Probabilities . . . . . . . . . . 46 2.9.4 *Multivariate Independent Gamma Function . . . 52 v vi CONTENTS 3 Describing Markets and Competition 55 3.1 Market and Competitive Structure . . . . . . . . . . . . . 55 3.2 Asymmetries in Market and Competition . . . . . . . . . 56 3.3 Differential Effectiveness . . . . . . . . . . . . . . . . . . . 57 3.4 Differential Cross Elasticities . . . . . . . . . . . . . . . . 59 3.5 Properties of Fully Extended Models . . . . . . . . . . . . 62 3.6 Determining Competitive Structures . . . . . . . . . . . . 65 3.7 Hierarchies of Market Segments . . . . . . . . . . . . . . . 68 3.8 Distinctiveness of Marketing Activities . . . . . . . . . . . 69 3.9 Time-Series Issues . . . . . . . . . . . . . . . . . . . . . . 78 3.10 Appendix for Chapter 3 . . . . . . . . . . . . . . . . . . . 84 3.10.1 *Log-Linear Time-Series Model . . . . . . . . . . . 84 4 Data Collection 87 4.1 The Accuracy of Scanner Data . . . . . . . . . . . . . . . 87 4.2 Issues in Aggregation. . . . . . . . . . . . . . . . . . . . . 89 4.3 National Tracking Data . . . . . . . . . . . . . . . . . . . 93 4.3.1 Store-Level Scanner Data . . . . . . . . . . . . . . 93 4.3.2 Store Audits . . . . . . . . . . . . . . . . . . . . . 95 4.3.3 Household Scanner Panels . . . . . . . . . . . . . . 96 4.3.4 Other Data Sources . . . . . . . . . . . . . . . . . 97 4.4 Market Information Systems. . . . . . . . . . . . . . . . . 98 5 Parameter Estimation 103 5.1 Calibrating Attraction Models. . . . . . . . . . . . . . . . 103 5.1.1 Maximum-Likelihood Estimation . . . . . . . . . . 104 5.1.2 Log-Linear Estimation . . . . . . . . . . . . . . . . 106 5.2 Log-Linear Regression Techniques . . . . . . . . . . . . . 108 5.2.1 Organization of Data for Estimation . . . . . . . . 110 5.2.2 Reading Regression-Analysis Outputs . . . . . . . 114 5.2.3 The Analysis-of-Covariance Representation . . . . 118 5.3 Properties of the Error Term . . . . . . . . . . . . . . . . 119 5.3.1 Assumptions on the Specification-Error Term . . . 120 5.3.2 Survey Data . . . . . . . . . . . . . . . . . . . . . 120 5.3.3 POS Data . . . . . . . . . . . . . . . . . . . . . . . 123 5.4 *Generalized Least-Squares Estimation. . . . . . . . . . . 125 5.4.1 Application of GLS to the Margarine Data . . . . 126 5.5 Estimation of Differential-EffectsModels . . . . . . . . . . 128 5.6 Collinearityin Differential-Effects Models . . . . . . . . . 134 5.6.1 Three Differential-EffectsModels . . . . . . . . . . 137 CONTENTS vii 5.6.2 Within-Brand Effects . . . . . . . . . . . . . . . . 139 5.6.3 Remedies . . . . . . . . . . . . . . . . . . . . . . . 141 5.7 Estimation of Cross-Effects Models . . . . . . . . . . . . . 143 5.8 A Multivariate MCI Regression Model . . . . . . . . . . . 148 5.9 Estimation of Category-Volume Models . . . . . . . . . . 149 5.10 Estimation of Share-Elasticities . . . . . . . . . . . . . . . 152 5.11 Problems with Zero Market Shares . . . . . . . . . . . . . 153 5.12 The Coffee-Market Example . . . . . . . . . . . . . . . . . 156 5.12.1 The Market-Share Model . . . . . . . . . . . . . . 156 5.12.2 The Category-Volume Model . . . . . . . . . . . . 165 5.12.3 Combining Share and Category Volume . . . . . . 168 5.13 Large-Scale Competitive Analysis . . . . . . . . . . . . . . 168 5.13.1 How Large Is Too Large? . . . . . . . . . . . . . . 170 5.13.2 Is BLUE Always Best? . . . . . . . . . . . . . . . . 172 5.14 Appendix for Chapter 5 . . . . . . . . . . . . . . . . . . . 175 5.14.1 Generalized Least Squares Estimation . . . . . . . 175 6 Competitive Maps 177 6.1 *Asymmetric Three-Mode Factor Analysis . . . . . . . . . 182 6.2 Portraying the Coffee Market . . . . . . . . . . . . . . . . 185 6.2.1 Signalling Competitive Change . . . . . . . . . . . 187 6.2.2 Competitive Maps: The Structure Over Brands . . 193 6.3 *Elasticitiesand Market Structure . . . . . . . . . . . . . 201 6.4 *Interpretive Aids for Competitive Maps . . . . . . . . . . 204 6.5 *Appendix for Chapter 6 . . . . . . . . . . . . . . . . . . 211 7 Decision-Support Systems 219 7.1 CASPER . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.2 Using HISTORY . . . . . . . . . . . . . . . . . . . . . . . 223 7.3 Simulating Static Occasions . . . . . . . . . . . . . . . . . 231 7.4 The Assumptions Underlying Planning . . . . . . . . . . . 249 7.5 What If There Were No Experts? . . . . . . . . . . . . . . 252 7.6 Dynamic Simulations . . . . . . . . . . . . . . . . . . . . . 253 7.7 Management Decision Making . . . . . . . . . . . . . . . . 256 8 A Research Agenda 259 8.1 Estimation Problems . . . . . . . . . . . . . . . . . . . . . 259 8.1.1 Missing Data . . . . . . . . . . . . . . . . . . . . . 259 8.1.2 Constrained Parameter Estimation . . . . . . . . . 260 8.1.3 Long-Run Effects . . . . . . . . . . . . . . . . . . . 260 viii CONTENTS 8.2 Issues in Decision Support . . . . . . . . . . . . . . . . . . 261 8.2.1 Game Theory . . . . . . . . . . . . . . . . . . . . . 261 8.2.2 Expert Systems . . . . . . . . . . . . . . . . . . . . 262 8.3 The Integration of Panel Data. . . . . . . . . . . . . . . . 262 8.4 Market-Basket Models . . . . . . . . . . . . . . . . . . . . 264 Index 272 List of Tables 2.1 Numerical Example of Kotler’s Fundamental Theorem . . 24 2.2 Numerical Example — The Effect of Reducing Price . . . 24 2.3 Effect of Correlation Between Purchase Frequencies and Choice Probabilities . . . . . . . . . . . . . . . . . . . . . 41 2.4 Relations Between Market Shares and Choice Probabilities 43 3.1 Numerical Example of Cross Elasticities for MCI Model . 60 3.2 Direct and Cross Elasticities for Seven Brands . . . . . . . 66 3.3 Interlocking and Nested Brand Groups . . . . . . . . . . . 67 4.1 Aggregating Market Shares and Causal Conditions . . . . 90 5.1 POS Data Example (Margarine) . . . . . . . . . . . . . . 112 5.2 Data Set for Estimation . . . . . . . . . . . . . . . . . . . 113 5.3 Regression Results for MCI Equation (5.8). . . . . . . . . 115 5.4 Regression Results for MNL Equation (5.9) . . . . . . . . 117 5.5 GLS Estimates for Table 5.3. . . . . . . . . . . . . . . . . 127 5.6 Data Set for Differential-EffectsModel . . . . . . . . . . . 131 5.7 Regression Results for Differential-EffectsModel (MCI) . 132 5.8 Log-Centered Differential-Effects Data . . . . . . . . . . . 133 5.9 Hypothetical Data for Differential-EffectsModel . . . . . 134 5.10 Condition Indices Australian Household-Products Example143 5.11 Regression Results for Cross-Effects Model (MCI) . . . . 146 5.12 Coffee Data — Average Prices and Market Shares . . . . 157 5.13 Regression Results for Cross-Effects Model (MCI) . . . . 159 5.14 Regression Results for Category-Volume Model . . . . . . 167 5.15 Computer Resources for Two Applications . . . . . . . . . 171 5.16 Summary of BLUE Parameters — IRI Data . . . . . . . . 173 5.17 Summary of BLUE Parameters — Nielsen Data . . . . . . 174 ix x LIST OF TABLES 6.1 Average Market-Share Elasticities of Price . . . . . . . . . 186 6.2 Coordinates of the Idealized Competitive Conditions . . . 193 6.3 Common Scaling Space . . . . . . . . . . . . . . . . . . . 213 6.4 Dimensionalityof Common Scaling Space . . . . . . . . . 214 6.5 The Core Matrix for the Coffee-Market Example . . . . . 216 6.6 Joint-Space Coefficients for Chain-Week Factors. . . . . . 217 6.7 Elasticities for Idealized Competitive Conditions . . . . . 219 7.1 Default Price and Promotion Table . . . . . . . . . . . . . 232 7.2 Default Costs . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.3 Default Discounts Offered to Retailer by Manufacturer . . 234

Description:
International Series in Quantitative Marketing Editor: Jehoshua Eliashberg The Wharton School University of Pennsylvania Philadelphia, Pennsylvania, U.S.A.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.