RESEARCHARTICLE Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach LuzA.Betancur1,2,SandraJ.Naranjo-Gaybor1,3,DianaM.Vinchira-Villarraga1,Nubia C.Moreno-Sarmiento1,LuisA.Maldonado4,ZulmaR.Suarez-Moreno5,AlejandroAcosta- Gonza´lez6,GillermoF.Padilla-Gonzalez7,Mo´nicaPuyana8,LeonardoCastellanos1, a1111111111 FreddyA.Ramos1* a1111111111 1 UniversidadNacionaldeColombia,SedeBogota´,DepartamentodeQu´ımica,Carrera,EdificiodeQu´ımica a1111111111 of427,Bogota´,Colombia,2 UniversidaddeCaldas.DepartamentodeQu´ımica.EdificioOrlandoSierra, a1111111111 BloqueB,SedePalograndeCalle.Manizales,Caldas,Colombia,3 UniversidaddelasFuerzasArmadas, a1111111111 ESPECarreradeIngenier´ıaAgropecuariaIASAIIAv.GeneralRumiñahuis/n,Sangolqu´ı-Ecuador, 4 UniversidadAuto´nomaMetropolitanaRector´ıa—Secretar´ıaGeneral,Prolongacio´nCanaldeMiramontes, Col.Ex-haciendaSanJuandeDios,Tlalpan,Me´xicoDF,5 Investigacio´nyDesarrollo,EmpresaColombiana deProductosVeterinariosVECOLS.A.,Bogota´D.C,6 UniversidaddelaSabana,FacultaddeIngenier´ıa, AutopistaNorte,Ch´ıa,Cundinamarca,Colombia,7 UniversidadedeSãoPaulo,FaculdadedeCiências FarmacêuticasdeRibeirãoPreto,Av.dodeSaoPaulo,FaculdadedeCiênciasFarmacêuticasdeRibeirão OPENACCESS Preto,Av.doCafe´,RibeirãoPreto–SP,Brazil,8 DepartamentodeCienciasBiolo´gicasyAmbientales, Citation:BetancurLA,Naranjo-GayborSJ, ProgramadeBiolog´ıaMarina,UniversidadJorgeTadeoLozano,Carrera,Modulo,Oficina,Bogota´,Colombia Vinchira-VillarragaDM,Moreno-SarmientoNC, *[email protected] MaldonadoLA,Suarez-MorenoZR,etal.(2017) MarineActinobacteriaasasourceofcompounds forphytopathogencontrol:Anintegrative metabolic-profiling/bioactivityandtaxonomical Abstract approach.PLoSONE12(2):e0170148. doi:10.1371/journal.pone.0170148 Marinebacteriaareconsideredaspromisingsourcesforthediscoveryofnovelbiologically Editor:Marie-JoelleVirolle,UniversiteParis-Sud, activecompounds.Inthisstudy,samplesofsediment,invertebrateandalgaewerecol- FRANCE lectedfromtheProvidenciaandSantaCatalinacoralreef(ColombianCaribbeanSea)with Received:September19,2016 theaimofisolatingActinobateria-likestrainabletoproduceantimicrobialandquorum quenchingcompoundsagainstpathogens.Severalapproacheswereusedtoselectactino- Accepted:December29,2016 bacterialisolates,obtaining203strainsfromallsamples.Accordingtotheir16SrRNAgene Published:February22,2017 sequencing,atotalof24strainswasclassifiedwithinActinobacteriarepresentedbythree Copyright:©2017Betancuretal.Thisisanopen genera:Streptomyces,Micromonospora,andGordonia.Inordertoassesstheirmetabolic accessarticledistributedunderthetermsofthe profiles,theactinobacterialstrainsweregrowninliquidcultures,andLC-MS-basedanaly- CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and sesfromethylacetatefractionswereperformed.Basedontaxonomicalclassification, reproductioninanymedium,providedtheoriginal screeninginformationofactivityagainstphytopathogenicstrainsandquorumquenching authorandsourcearecredited. activity,aswellasmetabolicprofiling,sixoutofthe24isolateswereselectedforfollow-up DataAvailabilityStatement:Allrelevantdataare withchemicalisolationandstructureidentificationanalysesofputativemetabolitesinvolved withinthepaperanditsSupportingInformation inantimicrobialactivities. files.Dataarealsoavailableatthefollowinglink: https://osf.io/dym7w/. Funding:LABthankstheProgramaDoctoralBecas Colciencias(567)forthegrantedscholarship (2012).SJNthanksSENESCYTEcuadorforthe grantedscholarship(2012-2).AAGisrecipientof an"EsTiempodevolver2015-2016"postdoctoral PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 1/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol fellowshipfromColcienciasandLaSabana Introduction University(Bogota´,Colombia).Financialsupport Duringthesecondhalfofthetwentiethcentury,oneofthemajorconcernsinagriculturewas fromCOLCIENCIAS(grantCod.1101-659-44402. CT.537/14),IFS(GrantF/5023-2),andUniversidad focusedonpollutionoriginatedbytheextensiveuseofhighlytoxicagrochemicalssuchaspes- NacionaldeColombia-DIB(grant/Hermes23604). ticides[1,2].Studiessincethe1970shaveshownthat,besidestheharmfuleffectsatthepublic- ThefunderVECOLS.A.providedsupportinthe healthlevel,theuseofpesticideshaveledtotheemergenceofphytopathogenresistancecaused formofsalariesforauthors(ZRS),butdidnothave bythesystematicuseofaproduct[3].Asthepresenceofpathogensincropsofglobaleco- anyadditionalroleinthestudydesign,data nomicimportanceispersistent,bothindustryandacademyhaveincreasedtheireffortsin collectionandanalysis,decisiontopublish,or findingsolutionstothisproblem. preparationofthemanuscript.Thisdoesnotalter ouradherencetoPLOSONEpoliciesonsharing Bacterialcoloniesofboth,pathogenicandbeneficstrainsarerecognizedassocialcommu- dataandmaterials. nitiesthatareabletoregulatetheirgeneexpressioninadensity-dependentway,phenomenon knownasQuorumsensing(QS)[4].QSsystemsregulatemanyprocessesrelatedtometabo- CompetingInterests:Oneoftheauthors(ZRS)is employedbythecommercialcompanyVECOLS.A. lism,developmentandvirulenceinbacterialcells,throughtheproductionofsmallsignaling Therearenopatents,productsindevelopmentor molecules,thatincreaseinconcentrationwithincreasingcellnumbers[5].Oncetheconcen- marketedproductstodeclare.Thisdoesnotalter trationofthesemoleculesreachesaspecificthreshold,differentsignaltransductioncascades ouradherencetoPLOSONEpoliciesonsharing areinducedresultinginchangesingeneexpression,includingpathogeniceffects.Theexpres- dataandmaterials. sionofsomevirulence-relatedtraitsaredependentonQSandmanyplat-pathogenicbacteria arereliantonthiskindofsystemstoevokediseaseinitsplanthost[6,7].Asanexample,ithas beenwidelyrecognizedthattoxoflavinproductioninsomeBurkholderiaspecies(particularly inB.glumae)iscontrolledbyaQSsystemandthat,theproductionofthisphytotoxinisakey pathogenicityfactorinricerotandwilt[8]. Analternativetosolvethisproblemisthesearchofantibioticcompoundsderivedfrom microorganisms,largelyrecognizedasthemainsourceofantimicrobialcompounds,witha potentialuseagainstphytopathogens[9].Microorganismsfromterrestrialenvironmentshave beenthetraditionalsourceofthesecompounds.Marinemicroorganismshavebeenrecognized asanimportantsourceofsecondarymetaboliteswiththepotentialtocontrolthesepathogens duringthelastyears[10,11].Furthermore,marinerepresentativesofthePhylaActinobacteria arerecognizedasoneofthemostimportantgroupswithbiotechnologicalpotential[12],thus contributingtoincreasingthesupplyofnewbioactivecompounds[13].Marine-derivedmetab- olitesbecomeprototypesforthedevelopmentofnewsubstanceswithaputativeinsecticidaland antimicrobialpotential,whichmakethemexcellentcandidatesfortheiruseasagrochemicals [14,15].OneclearexampleisthecaseofKasugamycinTM,asystemicfungicideagainstMagna- porthegriseaandbactericideagainstBurkholderiaglumae[16].Thisbioactivecompoundwas isolatedforthefirsttimefromStreptomyceskasugaensis,aterrestrialActinobacteria,andlater frommarinestrainsofStreptomycesrutgersensissubsp.gulangyunensis[17,18]. Themodeoftherapeuticefficacyofantibioticsisattributedtotheinhibitionofbacterial growthinvivowhenantibioticconcentrationsexceedtheMIC.However,concentrations belowtheMICcanstillattenuategrowthandtheexpressionofavarietyofbacterialvirulence factors,compromisingtheabilityofthepathogentocausedisease.Thisactivityofantibiotics isreferredtoassub-MICeffects,andthecompoundsthatproducetheseeffectsareknownas quorumquenchingcompounds. Quorumquenchingcompoundsalsohavebeenusedinordertoinhibittheexpressionof phytopathogenvirulencefactors.Oneofthreedifferentstrategiescanachievethis:theproduc- tionofenzymes,thatdegradatesthesignalmolecules;theinhibitionoftheenzymes(itstran- scriptionoritsactivity)involvedinthebiosynthesisofthesignal-molecule;ortheinhibitionof theactivationreceptorsofQS[4].Therearesomeexamplesofbacterialstrainsabletoinhibit QSsystemsforpathogenicstrains.Forexample,theexpressionoflactonaseenzymefrom Bacillus240B1,codifiedbytheaiiAgene,inPectobacteriumcarotovorum(formelyErwiniacar- otovora)reducesignificantlyAHLreleaseandsoftrotdiseasesymptomsindifferentdetached PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 2/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol tissuesofpotato,eggplant,Chinesecabbage,carrotandcelery[19].Inaddition,somestrains ofStreptomyceshavedemonstratedabilitytoinhibittheexpressionofdifferentvirulencefac- torsregulatedbyQSinP.caratovorum,throughtheproductionofsomesecondarymetabolites identifiedaspiericidinAandglucopiericidinA,showingthattheycouldhavepotentialuseas controlagentsofsomeplantspathogens[20].Compoundsderivedfrommarinemicroorgan- ismshavealsobeenevaluatedfortheirroleasquorumquenchers,suitableforactingasanti- pathogeniccompoundsthroughinterruptionofpathogenicbacterialcommunication;this interruptionreducesdamageinthehost[21,22].Forinstance,thelineardipeptidesPro–Gly andN-amido-α-prolinefromActinobacteriaassociatedtoamarinespongeshowedinhibitory activitiesagainstquorumsensing(QS)mediatedvirulencefactorsinPseudomonasaeruginosa [23]. However,despitetheeffortstoisolatenewcompoundsfrommarineenvironments,tradi- tionalbioprospectingapproachesincludingbioassay-guidedfractionationoftenleadtoisola- tionofalreadyknowncompounds[24].This,inpart,isduetotheuseofclassicalapproaches forselectingmicrobialstrainsbasedsolelyontaxonomicalorantimicrobialinformation[25]. Furthermore,studiesbasedexclusivelyonchemicaldiversityofcompoundslackdataontheir biologicalactivity,whichlimitstheirimpactforfurtherapplications.Forthesereasons,bio- prospectingofmicrobialstrainsforisolatingnewbioactivecompoundshasmovedtowards integratedstrategies,whichcombinesphylogeneticdataandbioactivitytestswithdereplica- tionapproaches,asaquickalternativeforidentifyingknownandbioactivemetabolitesina samplemixture[26].Thesestrategies,complementedwithaccuratemultivariateanalyses (PCA,HCA,OPLSandothers),haveshowntobeeffectiveinidentifyingnewbioactivecom- pounds,improvingthepipelinefordrugdiscoveryprogramsusingmicroorganisms[27]. Inthisstudy,wepresentastrategytostudythemetabolicpotentialofselectedstrainsof marineActinobacteriafromtheColombianCaribbeanSea,basedontheintegrationoftaxo- nomicalinformation;screeningdataofantimicrobialactivitiesagainstphytopathogenicstrains (BurkholderiaplantariiATCC43733,BurkholderiaglumaeATCC33617,Burkholderiagladioli 3704-1-FEDEARROZ-).Forantifungaltests,phytopathogenicfungiFusariumoxysporumf. sp.dianthirace2,Colletotrichumgloeosporioides26Bandquorumquenchingactivity(Chromo- bacteriumviolaceumATCC31532)wereused,alongwiththeirHPLC-MSmetabolicprofile. Allthedatasetsobtainedherewereintegratedtoprioritizeselectionofisolatesforfollow-up withchemicalisolationandstructureidentificationanalysesofactivecompounds.Adiscus- sionontheadvantagesoftheintegrativeapproachandthepossibleoutputsofthisstrategyis alsopresented. Materialsandmethods Isolationofbacterialstrains InordertoconductthisresearchtheANLA(AutoridadNacionaldeLicenciasAmbientales) andtheMinisteriodeAmbienteyDesarrolloSosteniblegrantedpermissiontocollectsamples andstudytherecoveredbacteria(PermissionN˚4of10/02/2010,Anexo2,ContratodeAcceso aRecursoGene´ticoNo108).Forbacterialstrainsisolation,smallpieces(2cm2)ofmarine invertebrates,algaeandsedimentswerecollectedbySCUBAdivingatreefsatOldProvidence Island(ColombianCaribbeanSea).Thegeographiccoordinatesofsamplingareawas13˚ 23’0,00"Na13˚25’0.00"N81˚22’0.00"Oto81˚24’0,00".Samplesofthesamesubstrateswerecol- lectedinduplicateatfivedifferentsitesonMarchof2013.Fragmentsofgorgoniansandalgae werecutoffwithsharpscissors.Spongefragmentswerecutoffwithadivingknife.Sediment samples(5cm3)werecollectedusingplasticspoons.Eachsamplewasindividuallyplacedina PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 3/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol smallziplockbagandbroughttothesurface.Samplesweregentlyrinsedwithsterilewaterand thenplaceddirectlyonthesurfaceofsolidculturemediaplates. TherecoveryofactinobacterialstrainswasperformedbyusingenrichedmediasuchasISP- 2agar(yeastextract4g/L,maltextract10g/L,dextrose4g/L,agar20g/L)andoatmealagar supplementedwithsalts(oatmeal30g/L,NaCl20.8g/L,KCl0.56g/L,MgSO 4.8g/L,Rilasea 4 salt1.5g/L,glycerol1.5g/L,agar18g/L).Plateswereincubatedfortwoweeksat30˚C. Oncebacterialgrowthwasdetected,agarwasfragmentedintopieceswithasterileneedle. Theobtainedfragmentsweretransferredto2.0mLofsterilesalinesolution(0.85%)andthen homogenizedinavortexandsupplementedwith50mgofCaCO inordertoimprovethe 3 growthofActinobacteriastrains.Suchsuspensionswereincubatedat26˚Cforoneweekand thenseriallydilutedwithTween-801(0.1%).Dilutionsfrom10−1to10−5weremassiveculti- vatedincasein-starchagar(CSA)(Casein1g/L,Starch10g/L,K HPO 0.5g/LAgar15g/L) 2 4 andincubatedat26˚Cforaperiodof4to6weeks. Purificationofbacterialisolateswasperformedbysuccessivesub-cultureofsinglecolonies inCSAmedium.Atotalof203isolateswasrecovered,including,162bacteriaand41fungi. Bacterialisolateswerepreservedasfollows:i)Forthebacteriaformingmycelium(typicalof Actinobacteria-likeorganisms),singlecoloniesweregrowninCSAplatesat4˚C(shortterm preservation)andmyceliasuspensionswerepreservedwithglycerol(50%)at-80˚C(Long termpreservation)[28].ii)Forthosebacteriawithnomyceliaformation,asinglecolonywas grownintrypticsoyagar(Difco),andaloopfulofbiomasswassuspendedinTrypticSoy Brothsupplementedwithglycerol50%,whichwerethenstoredat-80˚C.Taxonomicalidenti- fication,biochemicalcharacterizationandmetabolicprofilingstudiesweredoneto24strains duetotheirmicroscopicandmacroscopiccharacteristicsasActinobacteria-likestrains(vide infra).AllthestrainswereregisteredinthecollectionofmicroorganismsoftheIBUN(Insti- tutodeBiotecnolog´ıa—UniversidadNacionaldeColombia—SedeBogota´). Biochemicalcharacterizationofbacterialstrains SinglecoloniesoftheActinobacteria-likestrainswerecharacterizedbytheircolonymorphol- ogyinnutrientagar,ISP-2,ISP-3,andISP-4(S1Fig).Catalaseandoxidase(Bactident1Oxi- dasaMERKC)activityweretestedassuggestedforStreptomyces-likebacteria[29,30].Other biochemicalcharacteristicssuchasfermentationoroxidationofsugars(glucose,manitol,ino- sitol,sorbitol,rhamnose,sucrose,melibiose,amygdalinandarabinose);enzymeactivity(β- galactosidase,arginine-dihydrolase,lysinedecarboxylase,ornithinedecarboxylase,ureasae, tryptophandeaminase,gelatinase);citrateutilization;productionofsulfide,indoleandacet- oin;andnitratereductionweretestedwiththeAPI20Ekit(bioMe´rieuxInc.,Durham,NC) (S1Table).TheresultswerecomparedwiththosedescribedforotherActinobacteria-likebac- teria[31]. ForachemotaxonomiccharacterizationoftheActinobacteriastrains,thepresenceofL,L- diaminopimelicacid(LL-A pm)ormeso-diaminopimelicacidinthecellwalloftheisolates 2 wasdeterminedthroughtheprotocolestablishedbyStaneckandRoberts[32]withsomemod- ifications[33].Briefly,twoorthreeloopfulsoffreshbiomass(7–14daysgrowth)weresus- pendedin500μLofHCl6N.Suchsuspensionwashomogenizedinavortexfor10minand thenplacedinanovenat100˚Cfor8h.Aftercentrifugation,spentsupernatantsweretrans- ferredtoanewEppendorftube,anddriedat100˚C.500μLofsteriledistilledwaterwere addedtoeachtube,andsampleswerecentrifugedanddriedoncemore,untilsupernatants werecompletelydried.Thismaterialwasthesuspendedinto75μLofdistilledwater,and3μL ofeachsampleusedforfurtherTLCanalysesand1μLdiaminopimelicacidsmixture(CHE- M-IMPEXINT´LINC,1%indistilledwater)wereloadedoncelluloseTLCplates20x20.TLC PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 4/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol platesweredevelopedinsaturatedglasschamberscontainingmethanol-water-6NHCl-pyri- dine(80:26:4:10,v/v).Theplatesweredried,sprayedwithafreshlypreparedninhydrin solution(0.2%,w/vdissolvedinacetone)andheatedat100˚Cfor5min.PresenceofL,L-dia- minopimelicacidwasdetectedinthoseregionsshowingacharacteristicolivegreencolor (Rf=0.6).(S2Fig). ScanningElectronMicroscope(SEM)analysis Scanningelectronmicrographanalysisstrainsweregrowingfor8daysonISP-2agarmedium usingfilterpaper.CulturesofstrainsarefixedusingMilloningphosphatebuffer(0.1M,pH 7.2)Glutaraldehyde(1%).Thecellswererinsedwithdistilledwatersubsequentlydehydrated withethanol.Thefilterpaperwasfirstdried,thenfixedontostubsandcoatedwithgraphite. ThescanningmicroscopyanalysiswasperformedusingSEM-TescanVega3SB[34,35]. Taxonomicalidentificationandaccessionnumbers 24isolateswereselectedforfurtherstudiesbasedontheirmicroscopicandmacroscopicchar- acteristicsconsistentwithActinobacteria-likestrains.Forthetaxonomicalidentificationofthe selectedstrains,PCRamplificationandsequencingoftheentire16SrRNAlocusweredoneby usinguniversalprimers27Fand1492R,aspreviouslydescribed[36].Sequencesweretrimmed andassembledwithDNABasersoftware2.9andanaccuratealignmentwasobtainedusing theSINAonlinetool[37].Neighbor-joiningtreesofisolatesandtheirclosestrelativeswere generatedusingtheARBsoftware[38]andtheLTPs123availableintheSILVAdatabase[39]. AllDNA16SrRNAnucleotidesequencesforthe24strainsweredepositedinGenBank/ EMBL/DDBJ,undertheaccessionnumbersKX641378toKX641401,aspresentedinTable1. Selectedmorphotypeswereidentifiedinparallelto16SrRNAapproachbymassspectrome- trywithMALDI-TOF(Matrix-assistedlaserdesorption/ionizationtimeofflight)Biotyper BRUKER.Forthispurpose,strainswerere-growthinLBmediaandincubatedforeightdays atthesametemperatures.Identificationwasdonebydirectsmearmethod,whereasinglecol- onywaspickedandplacedontoaMALDItargetplateasathinlayerandallowedtodryat roomtemperature.TheMALDIplatewassubsequentlyoverlaidwith1μLof70%formicacid andthencoveredwiththematrixsolution(α-cyano-4-hydroxycinnamicacid—HCCA)and airdried.TheprofileswerevisualizedwiththesoftwareFlexControl(version3.0)andthe MALDIBiotyperRTC.DendogramswereobtainedusingBioTypersoftware3.0.Forcalibra- tionandasapositivecontrol,weusedaBacterialTestStandard(BTS)Escherichiacoli(DH5α) (BrukerDaltonikGmbH,Bremen,Germany)proteicprofile. Bioassaysusingmarinebacteriastrains Antimicrobialassays. Antibacterialactivityfrom24Actinobacteria-likeisolateswasfirst testedagainst3bacterialricepathogensbyusingadirectconfrontationassay.Thebacterial pathogensstrainsincluded:BurkholderiaplantariiATCC43733,BurkholderiaglumaeATCC 33617,andBurkholderiagladioliCIAT3704–1,kindlyprovidedbyFEDEARROZ,whichwere isolatedfromsymptomaticriceplantsofbacterialpanicleblightandriceseedlingblight.These bacterialstrainswererecoveredandgrownaspreviouslydescribed[40–43].Theconfrontation assaywasperformedasfollows:singlecoloniesofeachActinobacteria-likeisolatesweremas- sivelystreakedonMueller-Hintonagarplatescoveringhalfofthesurface,andplateswere incubatedat28˚Cfor10days.PathogenicBurkholderiawherethenstreakedinahorizontal line,perpendiculartotheactinobacterialgrowtharea.Plateswereincubatedat37˚Cand growthofBurkholderiastrainswasdailymonitoredforthreedays.Actinobacteria-likeisolates PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 5/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol Table1. AffiliationofActinobacteriastrainsisolatedfrommarinesamples. Cluster(OTU) Closestneighbors Sim% Strainnumber Strain/GenBankaccessionnumbers Source 1 Streptomycesgriseochromogenes 99.86 3 KX641378 Niphatesdigitalis(Porifera) 6 KX641383 Niphatesdigitalis(Porifera) Streptomycesviolascens 99.86 13 KX641381 Sediment 87 KX641385 Niphatesdigitalis(Porifera) Streptomycesresistomycificus 99.86 89.3 KX641386 Niphatesdigitalis(Porifera) 89.4 KX641387 Niphatesdigitalis(Porifera) Streptomyceshydrogenans 99.86 161a KX641396 Bryopsissp.(Chlorophyta) 161b KX641397 Bryopsissp.(Chlorophyta) Streptomycesalbidoflavus 99.86 184 KX641399 Euniceafusca(Gorgonacea) 194 KX641400 Sediment 208 KX641401 Euniceafusca(Gorgonacea) 2 Streptomycessp.MBRL172 99.03 182 KX641398 Amphiroasp.(Rhodophyta) 3 Streptomycessanyensis 99.72 5 KX641379 Niphatesdigitalis(Porifera) 143 KX641389 Niphatesdigitalis(Porifera) 144 KX641390 Niphatesdigitalis(Porifera) 144a KX641391 Niphatesdigitalis(Porifera) 145 KX641392 Niphatesdigitalis(Porifera) 148 KX641393 Niphatesdigitalis(Porifera) 149 KX641394 Niphatesdigitalis(Porifera) 149a KX641395 Niphatesdigitalis(Porifera) 4 Streptomycesmicroflavus 99.86 46b KX641384 Codiumsp.(Chlorophyta) Streptomycesfulvorobeus 99.86 5 Streptomycespratensis 100 9 KX641380 Dictyotasp.(Phaeophtyta) 6 Micromonosporachalcea 99.79 102N KX641388 Dictyotasp.(Phaeophtyta) Micromonosporamaritima 99.38 Micromonosporasediminicola 99.15 Micromonosporamarina 99.44 7 Gordoniabronchialis 98.41 25 KX641382 Xestospongiasp.(Porifera) doi:10.1371/journal.pone.0170148.t001 abletoinducetotalorpartialgrowthinhibitionofthepathogensafter48hourswereconsid- eredaspositiveforantibacterialactivity. Antifungalactivitiesfromall24strainsweremeasuredasdescribedbyKaninietal.[44]. Forantifungaltests,phytopathogenicfungiFusariumoxysporumf.sp.dianthirace2,isolated fromvascularwiltsymptomaticcarnationplants[45],andColletotrichumgloeosporioides26B, obtainedfromyamplantswithclassicalsymptomsofanthracnose[46]weretested.Thesephy- topathogenicfungiwerekindlyprovidedbythe“GrupodeEstudioenN˜ame”fromtheBio- technologyInstitute,andthe“EstudiodeActividadesMetabolicasVegetales”researchgroup oftheChemistryDepartmentfromtheUniversidadNacionaldeColombia. Quorumquenchingassayofmarinestrains. Inordertotesttheabilityofthe24Actino- bacteria-likeisolatestodisruptthequorumsensingsystems,Chromobacteriumviolaceum ATCC31532wasusedasabiosensorbymeansofacrossstreakantagonisticassay[43,47,48]. Briefly,LBagarplateswereseededwitheachActinobacteria-likeisolatebystreakingthemina horizontalline,neartooneoftheextremesoftheagarplate.Then,thebiosensorwasseeded perpendicularlytothislineandincubatedfor48hours.ThegrowthoftheC.violaceumstrain withoutviolaceinproduction(whitecolonies)wasregardedasaquorumquenchingpositive result,whilethegrowthofpurplecoloniesofC.violaceumortheabsenceofgrowthofthebio- sensorwereregardedasanegativeeffect. PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 6/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol Marinebacteriastrainscultureandextraction. Isolateswererecoveredfromtheirglyc- erolstockintoISP-2platesincubatedat28˚C.Strainsweresubsequentlyculturedin100mL bytriplicateinTrypticaseSoyBroth(TSBBactoTMBD)mediumin500mLconicalflasksby shakingat130rpmat25˚Cfor2weeks.Cultureswerethencentrifugedandfiltratedby 0.22μm,andtheirspentsupernatantswereextractedthreetimeswithethylacetate(EtOAc). Organicextractswereconcentratedundervacuumandkeptfrozenuntiltheiruseforbioactiv- ityscreening(antibacterial,antifungalandquorumquenchingactivity)andforLC-MSanaly- sis.AnEtOAcextractoftheculturemediaTSBwasusedasblankforbothbioassaysand chemicalanalysis. Bioassayusingorganicextracts. Antibacterialactivityoftheextracts:Antibacterial activityoftheextractsagainstBurkholderiapathogensstrainswasevaluatedbyadiffusiontest in96-wellmicrotiterplates[49].SinglecoloniesofBurkholderiaspp.weregrowninliquid mediumKingB(KB)at30˚Cpriortouse.30μLofeachbacterialculturewerethendiluted into200μLofKBagarmedium,in96wellmicrotiterplates.500μgofeachEtOAcextract werethensuspendedinto30μLofDMSO5%,andaddedintoeachwell.Plateswerestatically incubatedfor24hat37˚C,andthegrowthofeachBurkholderiaculturewasmonitoredafter 24hbyvisualinspection;thosewellsshowinginhibitionofBurkholderiagrowthwereconsid- eredpositiveforthepresenceofantibacterialcompounds.Gentamicin0,2μg/mLwasusedas positivecontrolforbacterialinhibition,andDMSO5%andTSBwereusedasnegative controls. Antifungalactivityoftheextracts:AntifungalactivitywasalsotestedusingEtOAcextracts obtainedforeachActinobacteria-likeisolateina24-wellmicrotiterplateassay.Briefly,each fungalstrainwasgrowninPDAplates,andaconidialsuspensionwaspreparedwith0.85% NaClsolution.Then,thisconidialsuspensionwasusedtoinoculateeachwell,previouslyfilled with2mLofPDA.Simultaneously,500μgofeachEtOAcextractsweredissolvedin30μL5% DMSO,andthissolutionwasaddedtothesurfaceofeachwell,previouslyinoculatedwiththe conidialsuspension.Theplateswerethenincubatedat26˚Cfor96h.Totalorpartialinhibi- tionofthefungalgrowthwasregardedaspositiveforthepresenceofantifungalcompoundsin suchanEtOAcextract.Asolutionof1%clotrimazole(5μL/well)wasusedaspositivecontrol, and5%DMSOandTSBwereusedasnegativecontrols. Quorumquenchingactivityoftheextracts:Organicextractsofmarinestrainswerealso testedforthepresenceofquorumquenchingcompounds,byusingadisc-diffusionplateassay [50].AHL-producingstrainChromobacteriumviolaceumATCC31532wasusedasabiosensor, and5mmdiameterdiscswereloadedwith300μgofeachEtOAcfraction.Discsweresubse- quentlyplacedonthesurfaceofagarplatespreviouslyinoculatedwithabacterialsuspension ofC.violaceumATCC31532(OD 0.5).Plateswereincubatedfor24hat30˚C.Asnega- 600nm tiveandpositivecontrols,300μLofDMSO(5%v/v)and200μg4-hydroxybenzaldehyde (PHB)perdiscwereused,respectively.Presenceofquorumquenchingcompoundswasidenti- fiedbythelackofviolaceinproductionaroundthediscs[51].Incontrast,wheneverzonesof growthinhibitionwereobserved,thisresultwasreportedasantibacterialextract. Metabolicprofilinganalysisofmarinestrains SamplepreparationandHPLC-MSanalysis. Organicextractsforeachisolateand mediumblankwerepreparedataconcentrationof1mg/mLinMeOH.Liquidchromatography- massspectrometryexperimentswerecarriedoutinanHPLCLaChrom(VWRHITACHI-E- LITE)coupledtoESI-ITmassspectrometerAmazonX(Bruker-Daltonics).Thechromatographic analysisusedaXTerraC-18column(4.6×150mm,5μm)andaflowrateof1.0mL/min.The mobilephaseconsistedof0.075%formicacid(A)andacetonitrilewith0.075%formicacid(B). PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 7/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol Thesolventprogramstartedwith10%Bfor3minandalinearincreaseto40%Bin17min,fol- lowedbyalinearincreaseto100%Bin15min,thenfollowedby10minat100%B.Thetotal analysistimeforeachsamplewas50min.Thesample(20μL)wasinjectedbyanautosampler. Themassspectrometrywascarriedoutinbothpositiveandnegativeionizationmodeswitha sprayvoltageat4kVandcapillarytemperatureat250˚C.Themassrangewassetfromm/z70– 3000.RawdatafilesgeneratedbyHPLC-MSwerefirstconvertedtonetCDFfiles. Dataanalysis. ThenetCDFfileswerethenimportedtoMZmine2.10software[52]for preprocessingsteps.PeakdetectioninMZminewasexecutedfollowingnoiseremoval,chro- matogramconstruction,andpeakdeconvolutionsteps[53].First,themassvalueswere detectedusingthecentroidmodeineachspectrumandthepeaksbelow1×105oftheheight werediscardedasnoise.Inthesecondstep,chromatogramswereconstructedforeachofthe massvalues,whichspanoveracertaintimerange.Theminimumtimespanoverthesameion wassetas1minandtheerroroftheionm/zvaluewasallowedwithin100ppm.Theminimum intensityofthehighestdatapointinthechromatogramwassetat1×105.Finally,adeconvolu- tionalgorithmwasappliedtoeachconstructedchromatogramofeachmassiontorecognize theactualchromatographicpeaks.The“baselinecutoff”algorithm,whichsearchesforlocal minimainthechromatogramandseparatesindividualpeaksatminimalpointswasused.The separatedpeakswerethendeisotopedusingthefunctionofisotopicpeaksgrouperinwhich wesetm/ztoleranceat1m/z;retentiontimetoleranceat1(min);maximumchargeof3;and representativeisotopebeingthemostintense.Theretentiontimenormalizerwasalsoused afterdeisotopingtoreduceinter-batchvariationbysettingm/ztoleranceat1m/z;retention timetoleranceat1absolute(min),andminimumstandardintensityat1.1×105.Selected MZmineparameterswerechosenaccordingtothecharacteristicsoftheLC-MSsystem(e.g. resolution,etc)andexperimentalresults(retentiontimeandm/zdeviation).Theremaining peaksindifferentsampleswerealignedbasedonthemassandretentiontimeofeachpeak.The ionm/ztoleranceforalignmentwas1.0or100ppm,retentiontimewas1absolute(min),and weightform/zwas20andRtwas15respectively.Followingalignment,theresultingpeaklist wasgap-filledwithmissingpeaksusingtheintensitytoleranceof20%andretentiontimetoler- anceof1min.Thealignedpeaklistwasthenexportedasacommaseparatedvalue(.CSV)file. DatawereimportedtoSIMCA-P14(Umetrics,Sweden)forfurthermultivariatedataanalysis [54].BarcodingwasgeneratedinMicrosoftExcelusingtheIFfunction(=IF(cell>0,1,0)).This presence-absencecreatedabinarydatasetforeachbacterialextractshowingtheoverallchemi- caldiversity.Valuesof“1”areshownasblack,whilevaluesof“0”arewhite[27].Additionally, anin-housedevelopedExceltoolwasusedtosortandremovefeatures(pairofm/zratiosand retentiontimes)associatedwithculturedmediablank(TSB).Dereplicationprocesswasdone usingAntiMarinnaturalproductsdatabase,andisotopicabundancewasconfirmedin HPLC-MSrawdata[54]. Resultsanddiscussions Marinebacteriaisolationandcharacterization EnvironmentalsamplescollectedfromthecoralreefofProvidencia(Colombia,South-west CaribbeanSea)werestudiedtorecoverassociatedmicroorganisms.Environmentalsamples wereprocessedbyusingclassicalenrichmentprotocolsforisolationofculturableActinobac- teria,suchastheuseofISP-2andoatmealagarculturemedia.[55].Oneweeklater,oncethe bacterialgrowthwasdetected,bothagarswerefragmentedintopiecesandtransferredtosaline solutionsupplementedwithCaCO ,inordertoimprovethegrowthofActinobacteriastrains 3 [56].Purificationofbacterialisolateswasperformedbysuccessivesub-cultureofsinglecolo- niesinCSAmedium,recovering203isolates:162weredescribedasbacteriawhile41asfungi. PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 8/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol InordertoidentifyActinobacteriastrains,thebacteriaweremorphologicallycharacterizedin fourculturemedia(ISP-2,ISP-3,ISP-4,nutrientagar),andbiochemicaltestsforsugarfermen- tationandoxidationaswellasforotherenzymeactivitieswerealsoperformed.Determination ofL,L-diaminopimelicacids(L,L-A pm)aschemotaxonomicmarkerforStreptomyceswas 2 alsocarriedout[57].Acompletedescriptionoftheobtainedresultsforallthesebiochemical traitsispresentedinTableandFig(S1TableandS1Fig).Morphologicalandbiochemicaldata showedthat22isolatesbelongtothegenusStreptomycesastheycontainedwhole-organism hydrolysatesrichinL,L-A pm,andtheyformedextensivelybranchedsubstratemyceliathat 2 carriedabundantaerialhyphaeabletodifferentiateintochainsofspores.Thissetofisolates wasofparticularinterestbecauseStreptomycetesareknowntobeoneofthemostprolific sourcesofsecondarymetabolites[58,59].Theothertwoisolates(25and102N)showedto containmeso-A pm(S2Fig),whichindicatethattheybelongtodifferentgenera,anditneeds 2 the16SrRNAtobeestablished.Overall,resultsofbiochemicalprofilesobtainedbyAPI20E testinall24strainsexhibiteddifferences,whichcouldindicatethatisolatesarenotredundant (S1Table).Forexample,althoughstrains9and5showedthesamebiochemicaltestsprofile, strain9wasconsidereddifferentfrom5sinceitsmorphologyinfourdifferentculturemedia (ISP-2,ISP-3,ISP-4,nutrientagar)wasdifferentfromthatpresentedbystrains5.Inthesame sense,itwasfoundthatisolates89.3and89.4aresimilarintheirbiochemicalprofile,andthey onlydifferintheiroxidasephenotype.Regardingthecatalasetest,allstrainswerecatalaseposi- tive,exceptthatof161b.AdditionallytheSEMofthestrains(S3Fig)showthespore-surface morphologyandthecharacteristicgrowthofActinobacteria.Theseproceduresallowedusto recover24Actinobacteriaisolatesoutofthe162bacterialisolates(c.a.15%)obtainedfrom marinesources. 16SrRNAanalysespresentedinTable1andFig1(each>1400bpinlength)suggestedthat all24isolateswerephylogeneticallyaffiliatedtophylaActinobacteria,representingthreedifferent generanamelyStreptomyces(22strains),Gordonia(onestrain,number25)andMicromonospora (onestrain,number102N).Theseresultsareinagreementwiththebiochemicalprofilesobtained fromAPI20-E,whichsuggestthattheirphenotypeisconsistentwiththeir16SrRNAgenotype. Furtherstudieswillbecarriedoutinordertodeterminetheprecisetaxonomicalidentificationto thespecieslevel.ThemajorityoftheActinobacteriaarefree-livingorganismsthatarewidelydis- tributedinbothterrestrialandmarineecosystems,thegeneraofthisphylumexhibitenormous Fig1.Comparisonofaphylogeneticreconstructionbasedon16SrRNAgenesoftheactinobacterial isolatesandMALDI-TOFprofilesclustering.ANeighborJoiningphylogenetictreebasedon16SrRNA genesoftheactinobacterialisolatesandtheirclosestrelatives(cultivableanduncultivable)wasdone(left side).Bootstrapcalculationwasdone(1000repetitions)andisshowforthemainbranchesinthetree.A dendrogrambasedonMALDI-TOFprofilesofeachisolate(rightside)wascalculatedtocomparetheobtained resultsbythesetwomethodologiesofclassification. doi:10.1371/journal.pone.0170148.g001 PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 9/25 MarineActinobacteriaasasourceofcompoundsforphytopathogencontrol diversityintermsoftheirmorphology,physiology,andmetaboliccapabilities.Theproducing capacityofindividualActinobacteriacanalsovaryenormously.SomeStreptomycesspeciespro- duceasingleantibiotic,whileothersproducearangeofdifferentcompoundsandcompound classes[60]. TheclosestneighborsandsimilaritypercentageforeachstrainarepresentedinTable1. Thephylogenetictreebasedon16SrRNAlocusforthe24Actinobacteriaisolatespresentedin Fig1showssevenoperationaltaxonomicalunits(OTUs).AtotalofelevenStreptomyceswas formingthefirstclade(OTU1),composedmainlyofrelatedstrainsrecoveredfromfivediffer- entsources(Table1),suggestingtheubiquityofthecluster,whichisnotconsideredasa redundantparameter.Itsclosestneighborshavebeenrecoveredmainlyfromsoil.OnlyS.albi- doflavus,recoveredmainlyfromseaandalsosoilexhibitsboth,antifungalandantibacterial activities[61,62].Twocloseneighbors,S.violacensandS.resistomycifushaveshownantibacte- rialactivity.SrainsofS.violascenshavebeenreportedtoproduceantibioticssuchasactinomy- cin[63].TheotherneighborsS.griseochromogensandS.hydrogenanshaveshownantifungal activity[64,65] Strains5,143,144,144a,145,148,149and149aweregroupedwithinthesamecluster (OTU5).TheclosestneighbortothisgroupwasStreptomycessanyensis.Thisstrainhasbeen recoveredfrommangrovesedimentsandhasthisisitsfirstreportofitsantimicrobialactivity [66,67].AlltheseeightstrainswererecoveredfromthesamespongeNiphatesdigitalis.How- ever,severaldifferencesobservedbetweentheirbiochemicalprofilesandtheirmorphologies indifferentialISPmediastronglyindicatesthattheyshouldbeconsideredasdifferentisolates. Otherfiveisolatesweregroupedinfivesingleclusters(i)Strain182Streptomycessp.(OTU2), whichiscloselyrelatedtoStreptomycescanchipurensis[68];(ii)Strain9(OTU3),whichgroups togetherwithStreptomycespratensis,thisstrainhasbeenrecoveredfromterrestrialenviron- mentsandtherearenotreportsforitsbiologicalactivity[69];(iii);Strain46b(OTU4),which iscloselyrelatedtoStreptomycesmicroflavusandStreptomycesfulvorobeus.S.microflavushas beenreportedfromseaandsoils,whileS.fulvorubeushasbeenreportedonlyfromthesea [70].Neitherofthesetwostrainshaveantimicrobialactivityreports(iv)Strain102N(OTU6) filiatedtoMicromonospora sp.astheclosestneighbor;Micromonospora speciesarewidelydis- tributedinnature,livingindifferentenvironments.Theyhavelongbeenknownasasignifi- cantsourceofsecondarymetabolitesanditwasrecentlydemonstratedthatMicromonospora speciesmayalsoinfluenceplantgrowthanddevelopment.Thegenushasalsobeenreportedto producealargenumberofantibioticsandissecondonlyafterStreptomycesinthisrespect,syn- thesizingupto500differentmoleculeswithdiversestructuresandproperties.Micromonos- poraspeciescanalsoproducehydrolyticenzymes,whichallowsthemtoplayanactiverolein thedegradationoforganicmatterintheirnaturalhabitats[71].and(v)strain25(OTU7)with Gordoniasp.astheclosestneighbor.MembersofthegenusGordoniawereoriginallyisolated asopportunisticpathogensinhumans.However,inrecentyears,mostnovelmembersofthe genushavebeenisolatedfromterrestrialandmarinesources[72]Severalmembersofthis taxonplayimportantrolesinbiodegradationandbioremediation.Theproductionofsurface- activecompoundsbyGordoniasp.hasbeenassociatedwiththeirabilitytodegradethehydro- phobiccompounds[73].Importantly,accordingtothecurrentlimitofcircumscriptionofa prokaryoticspeciesbasedonthe16SrDNAsequence[74],theisolate25couldbeaputative newspeciesbecausepercentageof16SrDNAsimilarityagainstitsclosestrelativeisbelow 98.7%.Ingeneral,wedidnotfindanysignificantcorrelationbetweenisolationsourcesand bacterialspecieshererecovered,whichindicatesthatallsourcesharbordifferentActinobac- teriaspecies,withoutapparentrecruitmentofaparticularOTUsbyanyspecificsource. Recently,matrixassistedlaserdesorption/ionizationtimeofflightmassspectrometry (MALDI-TOFMS)hasbeenusedforbacterialdereplicationandpreliminaryidentificationof PLOSONE|DOI:10.1371/journal.pone.0170148 February22,2017 10/25
Description: