RESEARCHARTICLE Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine AndrewA.Pericak1,ChristianJ.Thomas2*,DavidA.Kroodsma2,MatthewF.Wasson3, MatthewR.V.Ross1,NicholasE.Clinton4,DavidJ.Campagna5,YolanditaFranklin2,Emily S.Bernhardt1,JohnF.Amos2 1 DepartmentofBiology,DukeUniversity,Durham,NorthCarolina,UnitedStatesofAmerica,2 SkyTruth, Shepherdstown,WestVirginia,UnitedStatesofAmerica,3 AppalachianVoices,Boone,NorthCarolina, a1111111111 UnitedStatesofAmerica,4 GoogleEarthEngineTeam,GoogleInc.,MountainView,California,United a1111111111 StatesofAmerica,5 DepartmentofGeology&Geography,WestVirginiaUniversity,Morgantown,West a1111111111 Virginia,UnitedStatesofAmerica a1111111111 a1111111111 *[email protected] Abstract OPENACCESS SurfaceminingforcoalhastakenplaceintheCentralAppalachianregionoftheUnited Citation:PericakAA,ThomasCJ,KroodsmaDA, Statesforwelloveracentury,withanotableincreasesincethe1970s.Researchershave WassonMF,RossMRV,ClintonNE,etal.(2018) quantifiedtheecosystemandhealthimpactsstemmingfrommining,relyinginpartona Mappingtheyearlyextentofsurfacecoalminingin geospatialdatasetdefiningsurfacemining’sextentatadecadalinterval.Thisdataset,how- CentralAppalachiausingLandsatandGoogleEarth Engine.PLoSONE13(7):e0197758.https://doi. ever,doesnotdeliverthetemporalresolutionnecessarytosupportresearchthatcould org/10.1371/journal.pone.0197758 establishcausallinksbetweenminingactivityandenvironmentalorpublichealthandsafety Editor:JuanA.Añel,UniversidadedeVigo,SPAIN outcomes,norhasitbeenupdatedsince2005.HereweuseGoogleEarthEngineand LandsatimagerytomaptheyearlyextentofsurfacecoalmininginCentralAppalachiafrom Received:August29,2017 1985through2015,makingourprocessingmodelsandoutputdatapubliclyavailable.We Accepted:May8,2018 findthat2,900km2oflandhasbeennewlyminedoverthis31-yearperiod.Addingthis Published:July25,2018 more-recentminingtosurfaceminesconstructedpriorto1985,wecalculateacumulative Copyright:©2018Pericaketal.Thisisanopen miningfootprintof5,900km2.Overthestudyperiod,correlatingactivemineareawithhistor- accessarticledistributedunderthetermsofthe icalsurfaceminecoalproductionshowsthateachmetrictonofcoalisassociatedwith12 CreativeCommonsAttributionLicense,which m2ofactivelyminedland.Ourautomated,open-sourcemodelcanberegularlyupdatedas permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal newsurfaceminingoccursintheregionandcanberefinedtocaptureminingreclamation authorandsourcearecredited. activityintothefuture.Wefreelyandopenlyofferthedataforuseinarangeofenvironmen- DataAvailabilityStatement:Dataunderlyingthe tal,health,andeconomicstudies;moreover,wedemonstratethecapabilityofusingtools studyareavailableattheFigsharerepository.A likeEarthEnginetoanalyzeyearsofremotelysensedimageryoverspatiallylargeareasto DOIforeachfileonFigshareislistedinthe quantifylandusechange. SupportingInformationfiles. Funding:Wegratefullyacknowledgefinancial supportfromtheFoundationfortheCarolinas (https://www.fftc.org/)totheNicholasSchoolof theEnvironment(AAP,MRVR,ESB);theNational ScienceFoundationGraduateResearchFellowship Program(https://www.nsfgrfp.org/)andNational ScienceFoundationEarthSciencesHydrological Sciences(https://www.nsf.gov/div/index.jsp?div= PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 1/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia EAR;grant1417405)(AAP,MRVR,ESB);the Introduction CornellDouglasFoundation(http://www. ImpactsofsurfacecoalmininginAppalachia cornelldouglas.org/)(CJT,DAK,YF,JFA);andthe WallaceGeneticFoundation(http://www. Surfaceminingisabroadlyusedminingtechniquethathasincreasinglyreplacedunderground wallacegenetic.org/)(CJT,DAK,YF,JFA).The miningforavarietyofresources[1],especiallycoalintheUnitedStates[2].InCentralAppala- fundershadnoroleinstudydesign,datacollection chia,mostofthissurfaceminingforcoalisdoneinthesteep,dissectedlandscapesofKen- andanalysis,decisiontopublish,orpreparationof themanuscript.Variousauthorsareemployedby tucky,Tennessee,Virginia,andWestVirginia.Surfacemininginsuchsteeplandscapesis non-profitorcommercialinstitutions;thespecific calledmountaintopremovalcoalminingwithvalleyfills(MTMVF).Toaccesscoalfromthe rolesoftheseauthorsarearticulatedinthe‘author surface,MTMVFoperatorsharvestoverlyingforest,dismantlebedrockwithexplosivesand contributions’section.ThefunderSkyTruth heavymachinery,andextractcoalseamsrangingfrom0.25through1.5mthick[3].Thispro- providedsupportintheformofsalariesforauthors cessgenerateslargequantitiesofleftoverwasterock,orminespoils,whicharedepositedinto CJT,DAK,YF,JFA,butdidnothaveanyadditional headwatervalleys,buryingstreamsinasmuchas~200mofspoil[4].Unlikemanyothertypes roleinthestudydesign,datacollectionand analysis,decisiontopublish,orpreparationofthe ofsurfacemineoperations,whichmaybehundredsofmetersdeepbutoccuroverrelatively manuscript.ThefunderAppalachianVoices smallspatialscales,MTMVFmineshavebeenconstructedacrossthousandsofsquarekilome- providedsupportintheformofsalariesforauthor tersofland,makingitthesinglelargestsourceoflandusechangeintheregion[5,6]. MFW,butdidnothaveanyadditionalroleinthe MTMVFdramaticallyaltersvegetation,surfacetopography,andsubsurfacestructurein studydesign,datacollectionandanalysis,decision minedregions.NativeAppalachianforestsdonotreestablishonmostpost-mininglandscapes, topublish,orpreparationofthemanuscript.The funderGoogle,Inc.,providedsupportintheform causingashiftfromforesttograssland/shrublandecosystems[7,8].Thesenon-nativeecosys- ofsalariesforauthorNEC,butdidnothaveany temsgrowonalandscapewheremininghasloweredthelocaltopographiccomplexity[9], additionalroleinthestudydesign,datacollection loweredtheaverageslopebynearly10˚[4],andcreatednovelplateau-likelandscapes[4,9]. andanalysis,decisiontopublish,orpreparationof ChangingAppalachianlandscapesfromsteep,shallow-soiledforeststoflatgrasslandsoverly- themanuscript. ingdeepspoilpileshasalteredhowwaterandelementsmovethroughtheselandscapes[10]. Competinginterests:AuthorsChristianJ.Thomas, Instreamsdrainingvalleyfills,theflatlandscapesandincreasedstoragepotentialhavebeen DavidA.Kroodsma,YolanditaFranklinandJohnF. showntolowerstreamdischargeduringstormeventsandelevatebaseflow[11].Thewater AmosareemployedbySkyTruth,MatthewF. storedinthesevalleyfillsissteepedinareactivematrixofpyriteandcarbonaceousbedrock. WassonisemployedbyAppalachianVoicesand Pyrite,boundupincoalresidueandshales,producessulfuricacidwhenexposedtooxygen NicholasE.ClintonisemployedbyGoogle,Inc. Theseaffiliationsdonotalterouradherenceto andwater[12].InMTMVFspoils,thissulfuricacidisneutralizedbycarbonatematerials, PLOSONEpoliciesonsharingdataandmaterials. whichareintentionallymixedwithspoilstopreventacid-minedrainage[13,14].Theready Theauthorshavedeclaredthatnofurther supplyofsulfuricacid,carbonatebedrock,andhighsurface-areaspoilmaterialscreatesideal competinginterestsexist. conditionsforsomeofthehighestweatheringratesintheworld.Thenetweatheringreactions generatealkalineminedrainagewhichischaracterizedbyelevatedionconcentrationsofsul- fate(SO 2-),calcium(Ca2+),magnesium(Mg2+),bicarbonate(HCO -),andasuiteofotherele- 4 3 mentsincludingmajoraquaticpollutantslikeselenium(Se)[15,16].Theincreasedion concentrationsraisethemeanspecificconductanceofwaterinminedstreamsfromback- groundvaluesbelow~200toaverageswellover1,000μS/cm[15]. ThroughoutCentralAppalachianstreams,thephysicochemicalimpactsfromminingoper- ationshavebeenshowntodecreaseaquaticmacroinvertebratediversity[17,18,19],alter microbialcommunities[20],negativelyimpactfish[15,16],lowersalamanderabundance[21], anddecreasestreamleaf-litterbreakdownrates[22].Inadditiontothesenegativeaquatic impacts,MTMVFhasbeenshowntosubstantiallyincreasethecarboncostofburningcoal [23],fragmentforesthabitat[24,25],andelevatelocalsurfacetemperature[24].Finally,min- ingoperationscanmobilizesignificantdustcloudswithparticulatesthatcancausedetrimental humanhealthimpacts[26]. Mappingminingextent DespitetheoverwhelmingandwidespreadnegativeconsequencesfromMTMVF,theexact extentofminingoperationsintheAppalachianregionhasnotbeenupdatedsince2005[27]. Thatdataset(hereafterreferredtoasthe“MTM2009”datasetafteritsyearofpublication) PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 2/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia identifiessurfaceminesata30mresolution,detectableasearlyas1976andaslateas2005, acrossmostofCentralAppalachia.TheMTM2009dataset’smajorlimitation,however,isits temporalresolution;itonlymapsminingoperationsat~decadaltimescale.Whilethedataset specifiesexactlywhereaminehasoccurred,itprovidesacoarseten-yearwindowofwhenthat minemayhavebeeninactiveproduction.Toparsethehydrologic,biogeochemical,ecological, andhuman-healthimpactsfrommining,researchersrequirefinertemporalresolutionmaps ofminingextent. Here,weaimtoimproveupontheten-yearMTM2009datasetbyofferingayearly,30m datasetcoveringtheperiod1985through2015,andtomakethesedatafreelyandpublicly accessibleforanyuse.Inparticular,weareinterestedinlocatingareasbeingactivelyminedin anygivenyear.Webroadlydefineactiveminingasanylandwhereminingactivity(i.e.,earth removalandreplacement)waslikelyoccurring,orwhereminingactivitieshadrecentlyceased sothatthelandscapestillresembledamineinactivedevelopment. Moreover,weaimtoautomatethemodelingprocesssothatfutureminingareascanbe quicklyaddedtothedatasetasnewremotelysensedimagerybecomesavailable.The MTM2009datasetreliedonatime-intensivesupervisedclassification,butforourupdated approachwesoughttodevelopautomatedmethodsthatwouldenableannualestimatesofpast miningandfacilitaterapidupdatingofthedatasetinthefuture.Suchautomationisfacilitated inthiscasebecausethespectralcharacteristicsofasurfaceminevaryconsiderablyfromother landcoverclassesinthisregion. Tomodelminingextent,weusetheGoogleEarthEngineplatform.EarthEngineisafreely accessible,cloud-basedGoogleproductdesignedtoenableremotesensingstudiesoverlong timescalesandlargespatialextents.Inadditiontorunningdataprocessingoperations,Earth Enginehostsfullcollectionsofpublicremotesensingdata.Inourcase,weuseEarthEngine’s processingcapabilitiesanditscontinuallyupdatedarchiveofLandsatimagerytoproduceour dataset. WhileEarthEngineisitselfrelativelynew,manyresearchershaveusedmoderateresolution LandsatimagerytoquantifylandcoverchangescausedbysurfacemininginAppalachiaand elsewhere.Forinstance,researchersacquiredoneLandsatimageperyearforafour-county areainVirginiatoidentifyminelandsatayearlytimescalefrom1984through2001[10]. OtherresearchersusedLandsatimageryforfouryearsatadecadalintervaltoidentifysurface minesandreclamationactivity[5].AdifferentstudycomparedLandsatimageryandland coverdatafrom1992and2001todeterminethatsurfacemininghadcausedanaccelerated lossofecologicallyimportantinteriorforestinAppalachia[24].YetanotherusedLandsat imagerytoshowthatspeciesplantedtoaidwithminereclamation,suchastheinvasive autumnolive,couldbeidentifiedoverprevioussurfaceminesviaremotesensing[28].And finally,theLandTrendrproduct,asetofalgorithmstoquantifypixel-levellandcoverchange overtime,employsLandsatimageryforitsanalysis[29]. HereweuseEarthEnginetocreateanautomatedmodelthatidentifiessurfacecoalmining, particularlyMTMVF,acrossCentralAppalachia(acontiguousareaincludingportionsofKen- tucky,Tennessee,Virginia,andWestVirginia)atayearlytimescale.Wecallourapproach “automated”becausethealgorithmsonlyrequiretheusertosupplytheraw,orthorectified Landsatscenes;theuserdoesnotneedtomanipulateadditionalparameters.Wethenpresent summarystatisticsfromthemodel,explorethemodel’saccuracy,andcomparethemodelto findingsfromtheMTM2009dataset.Wedemonstrateoneexampleofusingthesedataincom- binationwithotherdatasets,inthiscasetocorrelateminedareawithcoalproduction.We explainsomedatasetlimitationsandconcludewithsuggestionsforfutureenhancementsto ourmodel. PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 3/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Materialsandmethods Studyarea Wechosea74-county,83,000km2areainCentralAppalachia,composedofcountiesinKen- tucky,Tennessee,Virginia,andWestVirginia,toconductourmodel(Fig1).Ourmodelulti- matelyprocessedimagerycoveringtheentiretyofthisstudyarea.Surfacecoalmine productionhasbeenreportedtotheUnitedStatesMineSafetyandHealthAdministrationin allofthesecountiesatsomepointsince1983[30],andallofthesecountiesarewithintheCen- tralAppalachianBasinasdefinedbyUnitedStatesGeologicalSurvey[31]. Analysismodel WecarriedoutLandsatdataprocessingbywritingJavaScriptprocessingscriptsusingtheGoo- gleEarthEngine’sapplicationprograminginterface(S1File);thesescriptscleanedeachinput scene(i.e.,image)fordataabnormalitiesorcloudcover;determinedthenormalizeddifference vegetationindex(NDVI)perscene;derivedagreenest-pixel(maximumNDVI)compositeper year;andlabeledeachpixelwithineachcompositeaslikelyactivemineorlikelynon-mine Fig1.Mapofstudyarea.Thestudyarearangesinlatitudefrom35.6444˚to39.0298˚andinlongitudefrom-79.6179˚to-85.8093˚.Geospatialdatadescribingthe studyareaandtheultimatemodeloutputsareavailabletodownloadathttps://www.skytruth.org/mtr-data-files/. https://doi.org/10.1371/journal.pone.0197758.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 4/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia basedonanannual,county-scaleNDVIthresholdthatwascomputedasdescribedbelow.We morenarrowlydefineactivemineareasasthoselocationswithamodel-indicatedlowNDVI ascomparedtotheNDVIofnearby,forestedareas.Thissimpleclassificationreliesonthe starkspectralcontrastinthisAppalachianregionbetweenminesandforests:ourmodelidenti- fiesareaslargelydevoidofvegetationandcallsthemmines.Ouroutputdatasetisthusaseries ofannual,30mpixelresolution,binaryimagesdepictinglocationswheremininglikely occurredthroughoutthegivenyear. NDVIimagesdepictareaswithhighlevelsofphotosyntheticallyactivevegetation.Calculat- ingNDVIissimple,requiringonlyaredandnear-infraredreflectancevalueperpixel[32].A vegetatedpixelwillhaveahighNDVIvalue(near1.0),whereasanon-vegetatedpixelwillhave alowNDVI(near-1.0).WeexpecttoseehighNDVIvaluesacrosstheAppalachianlandscape, especiallyinrelativelyundisturbedareas.Conversely,highlydisturbedareassuchassurface mineswillhavearelativelylowNDVIcomparedagainstavegetatedbackground(Fig2). WecleanedacollectionofrawLandsatscenesforundesirablepixelslikecloudsorsensor errors;toexcludeareasofnon-vegetateddisturbanceunlikelytobemines,suchasurbanareas orroads,wecompiledspatialinformationfrompubliclyaccessibledatasetsandmaskedout thosepixels.Fromthosecleanedandmaskedimages,wedeterminedeachpixel’smaximum NDVIperyeartoformaseriesofannual“greenest-pixel”images.Theseimagesshowthe greatestphotosyntheticactivityatanygivenpixeloverthecourseofthatyear.Thenumberof cleanedLandsatscenesusedtocreatethesegreenest-pixelcompositesvariedbypixelandby year,rangingfromasfewasoneimageperpixelperyeartomorethan30,owingtofactorslike lowimagefrequencyorfrequentcloudcover.BychoosingthemaximumNDVIvalueincreat- ingthecomposites,minesthatwereestablishedoverthecourseofthatyearwouldlikelynot appearinthegreenest-pixelimage;agreen,forestedpixelfromearlierthatyearwouldlikely haveahigherNDVIvaluethantheminepixel,andconsequentlythatforestedpixelwould appearinthecomposite. Fig2.ExampleNDVIimageandassociatedtruecolorimage.TheseimagesfromMay2014showtheareanear Spurlockville,WV,andinparticulartheHobet-21mountaintopcoalmine(38.08˚,-81.95˚).Darkercolorsinthe NDVIimage(A)indicatelowerNDVIvalues.Truecolorimagery(B)demonstratesthat,inthevisualspectrum, forestedareasappeargreenwhereasminedareasappeargray.BothimagesarederivedfromLandsat8top-of- atmospherereflectanceimageryandwereprocessedinEarthEngineforvisualization. https://doi.org/10.1371/journal.pone.0197758.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 5/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Foreachmaskedgreenest-pixelcompositeimage,weestablishedcounty-levelNDVI thresholdsthatallowedustosortremainingpixelsintolikelyminesversusothertypesofsur- facecovers.TheprocessingscriptsdeterminedthethresholdsbycollectingtheNDVIvaluesof pixelspercountynotwithinaknownminepermitboundary(i.e.,likelyforestedpixels)and settingthethresholdatthe0thto3rdpercentilemeanofthosepixels.Inotherwords,weidenti- fiednearlythelowestNDVIofknownforestedareasandassumedanypixelswithNDVIval- ueslessthanthatminimumvaluewerelikelymines.Weusedacountyscaletoreflectspatial differencesinimagequality,aswellasnaturallandscapevariationoverspace. Wethencleanedtheresultingbinaryimagestoremoveanynullvaluesortoremovevery smallareaslabeledasmines.Inparticular,ifourmodelidentifiedapixelatyearnasamine butidentifiedthatsamepixelatbothyears(n-1)and(n+1)asothersurfacecover,wereclassi- fiedthepixelatyearnasnon-mine.Likewise,wereclassifiedanynon-minepixelatyearnasa mineifthatpixelwasidentifiedasamineinyears(n-1)and(n+1).Finally,weremovedmine patcheslessthan9,000m2. Weassessedtheaccuracyofourdatasetbycomparingmanuallyclassifiedpointstotheclas- sificationsdeterminedbyourmodel.Peryear,wegatheredtrue-andfalse-colorimageryfrom LandsatorfromtheUnitedStatesDepartmentofAgriculture’sNationalAgricultureImagery Program,whenavailable.Weestablished10,250km2,circularplotsrandomlythroughoutthe studyarea,ensuringthateachstudyplotcontainedsomeactivemining.Wethenrandomly distributedandvisuallyclassifiedaminimumof2,000pointsperyearandtookasubsetofthat classificationsothateachplotinthatyearcontainedatleast150non-minepointsand50mine points,oratotalofapproximately62,000classifiedlocationsover31years.Weusedthesedata toassessthemodelaccuracyonanannualbasis. IncorporatingMTM2009data Sinceourmodelstartedat1985butweknowMTMVFhasoccurredpriortothatdate,we incorporatedthe1976through1984subsetoftheMTM2009dataintoourdataset.Weselected onlythosepixelsidentifiedasminesin1976or1984fromtheMTM2009dataandspatially appendedthemtoour1985through2015cumulativeminingdataset.Wethusgenerateda “first-mined”datasetthatrevealswhetheracertainareawasfirstconvertedintoasurfacemine eitherby1976,between1977and1984,orinanyyearfrom1985through2015.Ofnote,many mineslabeledbyMTM2009as“1976”likelystartedatsomeunknowndatepriorto1976,so wecannotpreciselysaywhenthoseearliestminesbegan.Welikewisegenerateda“last-mined” datasetthatsayswhenagivenareawasmostrecentlyanactivemine;however,thisdatasetcan- notshowifagivenareawasonceminedbutbecamereclaimed(i.e.,ceasedmining)andlater becameamineagain.Ourresultsbelowarebasedoffthe“first-mined”datasetortheannual miningdatasetgeneratedinthisstudyalone. Resultsanddiscussion Totalminingextent Between1985and2015,anaverageof87km2ofpreviouslyunminedlandwasconvertedtoa surfacemineinanygivenyear,withthisannualrateofchangevaryingfromalowof31km2 yr-1in2015to116km2yr-1in1999(Fig3C).Overtime,thisaddsuptoatotalofapproxi- mately2,900km2(orapproximately3.5percent)ofCentralAppalachiathathasbeenpartof anactivesurfacecoalmineatsomepointbetween1985through2015(Fig3B).Ratesofboth newmineareaexpansionandcoalproduction(Fig3C&3D)havedroppedoffprecipitously since2010. PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 6/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Fig3.Activemining,cumulativemining,andcoalproductionovertime.“ActiveMining”(A)meansanylandarea detectedbyourmodelaslikelymineforthegivenyear;“CumulativeMining”(B)isthenon-duplicativesummationof activemineareaovertime;thissumincludesmineareasidentifiedfrompre-1976through1984fromtheMTM2009 data(seeabove).“Newly-MinedAreas”(C)isthelandareathatwasfirstconvertedintoamineinthegivenyear. “SurfaceCoalProduction”(D)dataisfromtheMineSafetyandHealthAdministration[30]ratherthanourmodel;we presentithereforcomparison. https://doi.org/10.1371/journal.pone.0197758.g003 Thefullscopeofcumulativeminingfrom1976through2015,incorporatingthe1976and 1984subsetoftheMTM2009dataasdiscussedabove,yieldsatotalof5,900km2ofdetectable miningoverthe40-yearperiod(Fig3B).Thistotalindicatesthat3,000km2wasfirstminedin eitherpre-1976or1984.Forcomparison,thecumulativesurfaceminingareafrompre-1976 through2015comprises7.1percentofCentralAppalachia,andis18percentlargerthanthe landareaofthestateofDelawareandonly3.3percentsmallerthantheareaofEverglades NationalPark. Wedemonstratethatcumulativeminingincreasesatanear-linearratefrom1985through 2015,increasingonaverage87km2yr-1(anewmine“conversionrate”frompreviously unminedtominedland).However,between1984(i.e.,theendoftheMTM2009data)and 1985,thiscumulativetotaljumpsmorethan270km2(Fig3B).Inotherwords,ourresultssug- gest270km2oflandpreviouslyunminedthrough1984suddenlybecameaminein1985,but thenthatratedroppedtoanaverageof87km2yr-1after1985. Thisseemingdiscrepancyislikelyaresultofcombiningourminingdetectionalgorithm withtheMTM2009data,andnotasingleyeardramaticincreaseinminingrates.Onone hand,ourstudyareaislargerthanthatoftheMTM2009study.Whilemanyofthelargest mineswereidentifiedbybothstudies,oursomewhatlargerstudyareacouldhavegiventhe appearanceofmuchnewmineareain1985byfindingminessimplynotlocatedwithin MTM2009’sstudyarea.Additionally,weacknowledgethatourautomatedmodelislikely morelenientindecidingifapixelrepresentsaminethanwasthesupervisedclassification approachemployedbytheMTM2009study.Forexample,pixelsontheedgeofalargemine areamayhavebeenlabeledasminesbyourstudybutnon-minesbyMTM2009,leadingtoa furtherincreaseinourarealtotalby1985. PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 7/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Annualactiveminingextent WhereastheMTM2009studyonlyshowswhereminingoccurredduringsometen-year period,ourstudyrevealstheyearlyareasthatwereactivelybeingmined.Overtheperiod1985 through2015,wefindanaverageof940km2(greaterthan1.1percent)ofthestudyareaunder activemininginanygivenyear(Fig3A).Activeminingrangesfrom610km2to1,300km2per year.Thechangeinactiveminingareaperyearishighlyirregular,rangingfromanadditional 110km2ofminingbetweenoneyearandthenexttoadecreaseof150km2. Toexplainthisirregularchange,however,wefindamoderatelystrong,positiverelationship (r=0.63)betweenthechangeinactivemininginanygivenyearandthechangeincumulative mininginthatyear(Fig4).Thisrelationshipsuggeststhatyearswithmuchactiveminingalso hadmuchnewlyminedland(i.e.,alargeincreaseinthecumulativearea);andthatyearswith littleactivemininghadlittlenewlyminedland(i.e.,asmallincreaseinthecumulativearea).In thisregionofAppalachia,whenminecompaniesputforthheightenedminingeffort,thateffort wentingeneraltowardminingnewlandsratherthanre-miningoldlands.Moreover,we regressedthesedatatoshowthatevery1m2oflandunderactiveminingissignificantlyassoci- atedwith0.22m2ofconversiontonewlyminedarea(p<0.001,r2=0.40).Inotherwords, approximatelyone-fifthofactiveminelandinanygivenyearrepresentsnewlyconvertedarea. Accuracyassessment WefindthatourNDVI-basedmodelaccuratelyandefficientlyrevealsyearlyminingextent (S1Table).OuraccuracyassessmentyieldedvaluesfortheCohen’sKappacoefficientranging Fig4.Annualchangeincumulativeminingversuschangeinactivemining.“ActiveMinedArea”isanyareaper yearwherethemaximumNDVIobservedinthatyearwaslessthantheNDVIthresholdsetpercountyperyear. “CumulativeArea”isthesummationofuniqueactivemineareaovertime;ifsomelocationwasidentifiedasactive mineinoneyear,itsareawouldnotbeaddedagaintothecumulativeminingtotalinfutureyears.Each1m2oflandin activeminingisassociatedwith0.22m2ofnewlyminedarea. https://doi.org/10.1371/journal.pone.0197758.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 8/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia from0.62to0.93peryear.Thesepositivevaluessuggestthat,inallcases,ourmodelperforms 62to93percentbetterthanrandomchance.Wealsofindthattheuser’saccuracyofmined pointsforeachyearisatleast0.83orhigher,indicatingthatatleast83percentofpixelslabeled asminesactuallyrepresentminesontheground.Ofthe31yearsanalyzed,21yearshavemine useraccuracyvaluesgreaterthanorequalto0.90. Comparisontomineproductiondata Asawaytoassessourmodelresultsandtoexplorerelationshipsbetweenextractionanddis- turbance,weinvestigatedthedegreetowhichourmineareatotalsarecorrelatedwithknown coalproductionfromsurfaceminesinCentralAppalachia.Theoretically,thelandimpactsof anyincreaseordecreaseinproductionfromsurfaceminesshouldshowupinourmineextent data,butwithalagbetweenproductionandtheassociatedactiveminingarea.Alaglikely existsbecauseittakesyearsforaclearedareatorevegetate—particularlyanareathathas undergonethehighintensityofdisturbancecausedbyasurfacecoalmine.Moreover,ina largeoperationlikeamountaintopminewheremultiplecoalseamsmaybeminedsucces- sively,anareamaycontinuetobeminedforseveralyearsasminecompaniesblastanddig throughhundredsoffeetofelevationtoaccessallofthecoalseams. WeacquiredcoalproductiondataprovidedquarterlytotheMineSafetyandHealth AdministrationbyallminingcompaniesoperatingintheU.S.[30].Thesedatareporthow muchcoalwasproducedbydifferentminingtechniquessuchasundergroundminingand stripmining.Forthisstudy,weonlyusedproductiondatareportedfromCentralAppalachian "strip"mines,astheothertechniqueshaveverylittlesurfaceimpactpertonofcoalproduced. Weregressedyearlymineproductionquantitieswithareainactivemining,initiallyfinding virtuallynomodelfitwhenassumingnotimelag(r2=0.093;p<0.1).Bylaggingactivemine areaby5years,however,themodelfitdramaticallyimproved(r2=0.68;p<0.0001)(Fig5); Fig5.Yearlymineproductionversusactiveminearea,withandwithouta5-yeartimelag.Ratesofcoalproduction fromsurfacecoalminesintheregionarecomparedtothescaleofactiveminingestimatedinthesameyear(red circles)andfiveyearspreviously(blackcircles).Thereisnorelationshipwhendataareanalyzedfromthesameyear, buttheamountofcoalproducedfiveyearsearlierexplains68%ofthevarianceinactiveminingarea(regressionfit showninbluewith95%confidenceintervalingray). https://doi.org/10.1371/journal.pone.0197758.g005 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 9/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia thecorrelationsfor4and6yearsweresimilarinfit,so5yearsrepresentstheaveragetimefor theimprintofcoalextractiontoremainonthelandscape,asdefinedbyourNDVIthresholds. Inotherwords,theamountofcoalproducedtodaycanpredicttheamountofareathatwillbe categorizedas“activemining”5yearsintothefuture. Usingthis5-yearregressionmodel,wedeterminedthatacrossAppalachiafortheperiod from1985through2015,foreverymetrictonofcoalproduced,approximately12m2oflandis activelymined.Thisstatisticdoesnotindicatewhetherthe12m2landdisturbanceisareapre- viouslyminedornot,butnonethelessindicatestheactivemineareanecessarytoproducea certainamountofcoal.Forcomparison,apreviousstudyofAppalachiansurfaceminingused adecadalmineextentdatasettodeterminethata1metrictonproductionofcoalwasassoci- atedwith0.96m2oflanddisturbance[3].Thatourmodelpointstogreaterthanamagnitude moreofareaminedpermetrictonislikelyexplainedbyadifferenceinmethodsandstudy area.Thepriorstudy[3]regressedtotalmineproductionpercountyovera20-yearperiod againstdisturbedminearea,whereasweregressedyearlymineproductionacrosstheentire studyareaagainstyearlydisturbedarea.Moreover,thepriorstudy[3]onlyinvestigatedcoun- tiesinKentuckyandWestVirginia,thetwostateswiththegreatestcoalproductionandmin- ingarea,whereaswealsoincludedcountiesinVirginiaandTennessee.Inshort,wehavea finertemporalresolutionbutawiderspatialextent,indicatingtypicallyacrossAppalachiathat 12m2ofactivemineareaisnecessarypermetrictonofcoal.Forthecoal-richstatesofKen- tuckyandWestVirginia,however,perhapslesslandareaisrequiredforthesamequantityof coal. Wealsoinvestigatedthetrendofthisratioofactivemineareapermetrictonofcoalbyyear (Fig6).Wefindthisratioremainsrelativelylowfrom1985throughapproximately1997, Fig6.Ratioofactiveminelandpermetrictonofcoalproducedovertime. https://doi.org/10.1371/journal.pone.0197758.g006 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 10/15
Description: