ebook img

Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google PDF

15 Pages·2017·3.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google

RESEARCHARTICLE Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine AndrewA.Pericak1,ChristianJ.Thomas2*,DavidA.Kroodsma2,MatthewF.Wasson3, MatthewR.V.Ross1,NicholasE.Clinton4,DavidJ.Campagna5,YolanditaFranklin2,Emily S.Bernhardt1,JohnF.Amos2 1 DepartmentofBiology,DukeUniversity,Durham,NorthCarolina,UnitedStatesofAmerica,2 SkyTruth, Shepherdstown,WestVirginia,UnitedStatesofAmerica,3 AppalachianVoices,Boone,NorthCarolina, a1111111111 UnitedStatesofAmerica,4 GoogleEarthEngineTeam,GoogleInc.,MountainView,California,United a1111111111 StatesofAmerica,5 DepartmentofGeology&Geography,WestVirginiaUniversity,Morgantown,West a1111111111 Virginia,UnitedStatesofAmerica a1111111111 a1111111111 *[email protected] Abstract OPENACCESS SurfaceminingforcoalhastakenplaceintheCentralAppalachianregionoftheUnited Citation:PericakAA,ThomasCJ,KroodsmaDA, Statesforwelloveracentury,withanotableincreasesincethe1970s.Researchershave WassonMF,RossMRV,ClintonNE,etal.(2018) quantifiedtheecosystemandhealthimpactsstemmingfrommining,relyinginpartona Mappingtheyearlyextentofsurfacecoalminingin geospatialdatasetdefiningsurfacemining’sextentatadecadalinterval.Thisdataset,how- CentralAppalachiausingLandsatandGoogleEarth Engine.PLoSONE13(7):e0197758.https://doi. ever,doesnotdeliverthetemporalresolutionnecessarytosupportresearchthatcould org/10.1371/journal.pone.0197758 establishcausallinksbetweenminingactivityandenvironmentalorpublichealthandsafety Editor:JuanA.Añel,UniversidadedeVigo,SPAIN outcomes,norhasitbeenupdatedsince2005.HereweuseGoogleEarthEngineand LandsatimagerytomaptheyearlyextentofsurfacecoalmininginCentralAppalachiafrom Received:August29,2017 1985through2015,makingourprocessingmodelsandoutputdatapubliclyavailable.We Accepted:May8,2018 findthat2,900km2oflandhasbeennewlyminedoverthis31-yearperiod.Addingthis Published:July25,2018 more-recentminingtosurfaceminesconstructedpriorto1985,wecalculateacumulative Copyright:©2018Pericaketal.Thisisanopen miningfootprintof5,900km2.Overthestudyperiod,correlatingactivemineareawithhistor- accessarticledistributedunderthetermsofthe icalsurfaceminecoalproductionshowsthateachmetrictonofcoalisassociatedwith12 CreativeCommonsAttributionLicense,which m2ofactivelyminedland.Ourautomated,open-sourcemodelcanberegularlyupdatedas permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal newsurfaceminingoccursintheregionandcanberefinedtocaptureminingreclamation authorandsourcearecredited. activityintothefuture.Wefreelyandopenlyofferthedataforuseinarangeofenvironmen- DataAvailabilityStatement:Dataunderlyingthe tal,health,andeconomicstudies;moreover,wedemonstratethecapabilityofusingtools studyareavailableattheFigsharerepository.A likeEarthEnginetoanalyzeyearsofremotelysensedimageryoverspatiallylargeareasto DOIforeachfileonFigshareislistedinthe quantifylandusechange. SupportingInformationfiles. Funding:Wegratefullyacknowledgefinancial supportfromtheFoundationfortheCarolinas (https://www.fftc.org/)totheNicholasSchoolof theEnvironment(AAP,MRVR,ESB);theNational ScienceFoundationGraduateResearchFellowship Program(https://www.nsfgrfp.org/)andNational ScienceFoundationEarthSciencesHydrological Sciences(https://www.nsf.gov/div/index.jsp?div= PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 1/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia EAR;grant1417405)(AAP,MRVR,ESB);the Introduction CornellDouglasFoundation(http://www. ImpactsofsurfacecoalmininginAppalachia cornelldouglas.org/)(CJT,DAK,YF,JFA);andthe WallaceGeneticFoundation(http://www. Surfaceminingisabroadlyusedminingtechniquethathasincreasinglyreplacedunderground wallacegenetic.org/)(CJT,DAK,YF,JFA).The miningforavarietyofresources[1],especiallycoalintheUnitedStates[2].InCentralAppala- fundershadnoroleinstudydesign,datacollection chia,mostofthissurfaceminingforcoalisdoneinthesteep,dissectedlandscapesofKen- andanalysis,decisiontopublish,orpreparationof themanuscript.Variousauthorsareemployedby tucky,Tennessee,Virginia,andWestVirginia.Surfacemininginsuchsteeplandscapesis non-profitorcommercialinstitutions;thespecific calledmountaintopremovalcoalminingwithvalleyfills(MTMVF).Toaccesscoalfromthe rolesoftheseauthorsarearticulatedinthe‘author surface,MTMVFoperatorsharvestoverlyingforest,dismantlebedrockwithexplosivesand contributions’section.ThefunderSkyTruth heavymachinery,andextractcoalseamsrangingfrom0.25through1.5mthick[3].Thispro- providedsupportintheformofsalariesforauthors cessgenerateslargequantitiesofleftoverwasterock,orminespoils,whicharedepositedinto CJT,DAK,YF,JFA,butdidnothaveanyadditional headwatervalleys,buryingstreamsinasmuchas~200mofspoil[4].Unlikemanyothertypes roleinthestudydesign,datacollectionand analysis,decisiontopublish,orpreparationofthe ofsurfacemineoperations,whichmaybehundredsofmetersdeepbutoccuroverrelatively manuscript.ThefunderAppalachianVoices smallspatialscales,MTMVFmineshavebeenconstructedacrossthousandsofsquarekilome- providedsupportintheformofsalariesforauthor tersofland,makingitthesinglelargestsourceoflandusechangeintheregion[5,6]. MFW,butdidnothaveanyadditionalroleinthe MTMVFdramaticallyaltersvegetation,surfacetopography,andsubsurfacestructurein studydesign,datacollectionandanalysis,decision minedregions.NativeAppalachianforestsdonotreestablishonmostpost-mininglandscapes, topublish,orpreparationofthemanuscript.The funderGoogle,Inc.,providedsupportintheform causingashiftfromforesttograssland/shrublandecosystems[7,8].Thesenon-nativeecosys- ofsalariesforauthorNEC,butdidnothaveany temsgrowonalandscapewheremininghasloweredthelocaltopographiccomplexity[9], additionalroleinthestudydesign,datacollection loweredtheaverageslopebynearly10˚[4],andcreatednovelplateau-likelandscapes[4,9]. andanalysis,decisiontopublish,orpreparationof ChangingAppalachianlandscapesfromsteep,shallow-soiledforeststoflatgrasslandsoverly- themanuscript. ingdeepspoilpileshasalteredhowwaterandelementsmovethroughtheselandscapes[10]. Competinginterests:AuthorsChristianJ.Thomas, Instreamsdrainingvalleyfills,theflatlandscapesandincreasedstoragepotentialhavebeen DavidA.Kroodsma,YolanditaFranklinandJohnF. showntolowerstreamdischargeduringstormeventsandelevatebaseflow[11].Thewater AmosareemployedbySkyTruth,MatthewF. storedinthesevalleyfillsissteepedinareactivematrixofpyriteandcarbonaceousbedrock. WassonisemployedbyAppalachianVoicesand Pyrite,boundupincoalresidueandshales,producessulfuricacidwhenexposedtooxygen NicholasE.ClintonisemployedbyGoogle,Inc. Theseaffiliationsdonotalterouradherenceto andwater[12].InMTMVFspoils,thissulfuricacidisneutralizedbycarbonatematerials, PLOSONEpoliciesonsharingdataandmaterials. whichareintentionallymixedwithspoilstopreventacid-minedrainage[13,14].Theready Theauthorshavedeclaredthatnofurther supplyofsulfuricacid,carbonatebedrock,andhighsurface-areaspoilmaterialscreatesideal competinginterestsexist. conditionsforsomeofthehighestweatheringratesintheworld.Thenetweatheringreactions generatealkalineminedrainagewhichischaracterizedbyelevatedionconcentrationsofsul- fate(SO 2-),calcium(Ca2+),magnesium(Mg2+),bicarbonate(HCO -),andasuiteofotherele- 4 3 mentsincludingmajoraquaticpollutantslikeselenium(Se)[15,16].Theincreasedion concentrationsraisethemeanspecificconductanceofwaterinminedstreamsfromback- groundvaluesbelow~200toaverageswellover1,000μS/cm[15]. ThroughoutCentralAppalachianstreams,thephysicochemicalimpactsfromminingoper- ationshavebeenshowntodecreaseaquaticmacroinvertebratediversity[17,18,19],alter microbialcommunities[20],negativelyimpactfish[15,16],lowersalamanderabundance[21], anddecreasestreamleaf-litterbreakdownrates[22].Inadditiontothesenegativeaquatic impacts,MTMVFhasbeenshowntosubstantiallyincreasethecarboncostofburningcoal [23],fragmentforesthabitat[24,25],andelevatelocalsurfacetemperature[24].Finally,min- ingoperationscanmobilizesignificantdustcloudswithparticulatesthatcancausedetrimental humanhealthimpacts[26]. Mappingminingextent DespitetheoverwhelmingandwidespreadnegativeconsequencesfromMTMVF,theexact extentofminingoperationsintheAppalachianregionhasnotbeenupdatedsince2005[27]. Thatdataset(hereafterreferredtoasthe“MTM2009”datasetafteritsyearofpublication) PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 2/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia identifiessurfaceminesata30mresolution,detectableasearlyas1976andaslateas2005, acrossmostofCentralAppalachia.TheMTM2009dataset’smajorlimitation,however,isits temporalresolution;itonlymapsminingoperationsat~decadaltimescale.Whilethedataset specifiesexactlywhereaminehasoccurred,itprovidesacoarseten-yearwindowofwhenthat minemayhavebeeninactiveproduction.Toparsethehydrologic,biogeochemical,ecological, andhuman-healthimpactsfrommining,researchersrequirefinertemporalresolutionmaps ofminingextent. Here,weaimtoimproveupontheten-yearMTM2009datasetbyofferingayearly,30m datasetcoveringtheperiod1985through2015,andtomakethesedatafreelyandpublicly accessibleforanyuse.Inparticular,weareinterestedinlocatingareasbeingactivelyminedin anygivenyear.Webroadlydefineactiveminingasanylandwhereminingactivity(i.e.,earth removalandreplacement)waslikelyoccurring,orwhereminingactivitieshadrecentlyceased sothatthelandscapestillresembledamineinactivedevelopment. Moreover,weaimtoautomatethemodelingprocesssothatfutureminingareascanbe quicklyaddedtothedatasetasnewremotelysensedimagerybecomesavailable.The MTM2009datasetreliedonatime-intensivesupervisedclassification,butforourupdated approachwesoughttodevelopautomatedmethodsthatwouldenableannualestimatesofpast miningandfacilitaterapidupdatingofthedatasetinthefuture.Suchautomationisfacilitated inthiscasebecausethespectralcharacteristicsofasurfaceminevaryconsiderablyfromother landcoverclassesinthisregion. Tomodelminingextent,weusetheGoogleEarthEngineplatform.EarthEngineisafreely accessible,cloud-basedGoogleproductdesignedtoenableremotesensingstudiesoverlong timescalesandlargespatialextents.Inadditiontorunningdataprocessingoperations,Earth Enginehostsfullcollectionsofpublicremotesensingdata.Inourcase,weuseEarthEngine’s processingcapabilitiesanditscontinuallyupdatedarchiveofLandsatimagerytoproduceour dataset. WhileEarthEngineisitselfrelativelynew,manyresearchershaveusedmoderateresolution LandsatimagerytoquantifylandcoverchangescausedbysurfacemininginAppalachiaand elsewhere.Forinstance,researchersacquiredoneLandsatimageperyearforafour-county areainVirginiatoidentifyminelandsatayearlytimescalefrom1984through2001[10]. OtherresearchersusedLandsatimageryforfouryearsatadecadalintervaltoidentifysurface minesandreclamationactivity[5].AdifferentstudycomparedLandsatimageryandland coverdatafrom1992and2001todeterminethatsurfacemininghadcausedanaccelerated lossofecologicallyimportantinteriorforestinAppalachia[24].YetanotherusedLandsat imagerytoshowthatspeciesplantedtoaidwithminereclamation,suchastheinvasive autumnolive,couldbeidentifiedoverprevioussurfaceminesviaremotesensing[28].And finally,theLandTrendrproduct,asetofalgorithmstoquantifypixel-levellandcoverchange overtime,employsLandsatimageryforitsanalysis[29]. HereweuseEarthEnginetocreateanautomatedmodelthatidentifiessurfacecoalmining, particularlyMTMVF,acrossCentralAppalachia(acontiguousareaincludingportionsofKen- tucky,Tennessee,Virginia,andWestVirginia)atayearlytimescale.Wecallourapproach “automated”becausethealgorithmsonlyrequiretheusertosupplytheraw,orthorectified Landsatscenes;theuserdoesnotneedtomanipulateadditionalparameters.Wethenpresent summarystatisticsfromthemodel,explorethemodel’saccuracy,andcomparethemodelto findingsfromtheMTM2009dataset.Wedemonstrateoneexampleofusingthesedataincom- binationwithotherdatasets,inthiscasetocorrelateminedareawithcoalproduction.We explainsomedatasetlimitationsandconcludewithsuggestionsforfutureenhancementsto ourmodel. PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 3/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Materialsandmethods Studyarea Wechosea74-county,83,000km2areainCentralAppalachia,composedofcountiesinKen- tucky,Tennessee,Virginia,andWestVirginia,toconductourmodel(Fig1).Ourmodelulti- matelyprocessedimagerycoveringtheentiretyofthisstudyarea.Surfacecoalmine productionhasbeenreportedtotheUnitedStatesMineSafetyandHealthAdministrationin allofthesecountiesatsomepointsince1983[30],andallofthesecountiesarewithintheCen- tralAppalachianBasinasdefinedbyUnitedStatesGeologicalSurvey[31]. Analysismodel WecarriedoutLandsatdataprocessingbywritingJavaScriptprocessingscriptsusingtheGoo- gleEarthEngine’sapplicationprograminginterface(S1File);thesescriptscleanedeachinput scene(i.e.,image)fordataabnormalitiesorcloudcover;determinedthenormalizeddifference vegetationindex(NDVI)perscene;derivedagreenest-pixel(maximumNDVI)compositeper year;andlabeledeachpixelwithineachcompositeaslikelyactivemineorlikelynon-mine Fig1.Mapofstudyarea.Thestudyarearangesinlatitudefrom35.6444˚to39.0298˚andinlongitudefrom-79.6179˚to-85.8093˚.Geospatialdatadescribingthe studyareaandtheultimatemodeloutputsareavailabletodownloadathttps://www.skytruth.org/mtr-data-files/. https://doi.org/10.1371/journal.pone.0197758.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 4/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia basedonanannual,county-scaleNDVIthresholdthatwascomputedasdescribedbelow.We morenarrowlydefineactivemineareasasthoselocationswithamodel-indicatedlowNDVI ascomparedtotheNDVIofnearby,forestedareas.Thissimpleclassificationreliesonthe starkspectralcontrastinthisAppalachianregionbetweenminesandforests:ourmodelidenti- fiesareaslargelydevoidofvegetationandcallsthemmines.Ouroutputdatasetisthusaseries ofannual,30mpixelresolution,binaryimagesdepictinglocationswheremininglikely occurredthroughoutthegivenyear. NDVIimagesdepictareaswithhighlevelsofphotosyntheticallyactivevegetation.Calculat- ingNDVIissimple,requiringonlyaredandnear-infraredreflectancevalueperpixel[32].A vegetatedpixelwillhaveahighNDVIvalue(near1.0),whereasanon-vegetatedpixelwillhave alowNDVI(near-1.0).WeexpecttoseehighNDVIvaluesacrosstheAppalachianlandscape, especiallyinrelativelyundisturbedareas.Conversely,highlydisturbedareassuchassurface mineswillhavearelativelylowNDVIcomparedagainstavegetatedbackground(Fig2). WecleanedacollectionofrawLandsatscenesforundesirablepixelslikecloudsorsensor errors;toexcludeareasofnon-vegetateddisturbanceunlikelytobemines,suchasurbanareas orroads,wecompiledspatialinformationfrompubliclyaccessibledatasetsandmaskedout thosepixels.Fromthosecleanedandmaskedimages,wedeterminedeachpixel’smaximum NDVIperyeartoformaseriesofannual“greenest-pixel”images.Theseimagesshowthe greatestphotosyntheticactivityatanygivenpixeloverthecourseofthatyear.Thenumberof cleanedLandsatscenesusedtocreatethesegreenest-pixelcompositesvariedbypixelandby year,rangingfromasfewasoneimageperpixelperyeartomorethan30,owingtofactorslike lowimagefrequencyorfrequentcloudcover.BychoosingthemaximumNDVIvalueincreat- ingthecomposites,minesthatwereestablishedoverthecourseofthatyearwouldlikelynot appearinthegreenest-pixelimage;agreen,forestedpixelfromearlierthatyearwouldlikely haveahigherNDVIvaluethantheminepixel,andconsequentlythatforestedpixelwould appearinthecomposite. Fig2.ExampleNDVIimageandassociatedtruecolorimage.TheseimagesfromMay2014showtheareanear Spurlockville,WV,andinparticulartheHobet-21mountaintopcoalmine(38.08˚,-81.95˚).Darkercolorsinthe NDVIimage(A)indicatelowerNDVIvalues.Truecolorimagery(B)demonstratesthat,inthevisualspectrum, forestedareasappeargreenwhereasminedareasappeargray.BothimagesarederivedfromLandsat8top-of- atmospherereflectanceimageryandwereprocessedinEarthEngineforvisualization. https://doi.org/10.1371/journal.pone.0197758.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 5/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Foreachmaskedgreenest-pixelcompositeimage,weestablishedcounty-levelNDVI thresholdsthatallowedustosortremainingpixelsintolikelyminesversusothertypesofsur- facecovers.TheprocessingscriptsdeterminedthethresholdsbycollectingtheNDVIvaluesof pixelspercountynotwithinaknownminepermitboundary(i.e.,likelyforestedpixels)and settingthethresholdatthe0thto3rdpercentilemeanofthosepixels.Inotherwords,weidenti- fiednearlythelowestNDVIofknownforestedareasandassumedanypixelswithNDVIval- ueslessthanthatminimumvaluewerelikelymines.Weusedacountyscaletoreflectspatial differencesinimagequality,aswellasnaturallandscapevariationoverspace. Wethencleanedtheresultingbinaryimagestoremoveanynullvaluesortoremovevery smallareaslabeledasmines.Inparticular,ifourmodelidentifiedapixelatyearnasamine butidentifiedthatsamepixelatbothyears(n-1)and(n+1)asothersurfacecover,wereclassi- fiedthepixelatyearnasnon-mine.Likewise,wereclassifiedanynon-minepixelatyearnasa mineifthatpixelwasidentifiedasamineinyears(n-1)and(n+1).Finally,weremovedmine patcheslessthan9,000m2. Weassessedtheaccuracyofourdatasetbycomparingmanuallyclassifiedpointstotheclas- sificationsdeterminedbyourmodel.Peryear,wegatheredtrue-andfalse-colorimageryfrom LandsatorfromtheUnitedStatesDepartmentofAgriculture’sNationalAgricultureImagery Program,whenavailable.Weestablished10,250km2,circularplotsrandomlythroughoutthe studyarea,ensuringthateachstudyplotcontainedsomeactivemining.Wethenrandomly distributedandvisuallyclassifiedaminimumof2,000pointsperyearandtookasubsetofthat classificationsothateachplotinthatyearcontainedatleast150non-minepointsand50mine points,oratotalofapproximately62,000classifiedlocationsover31years.Weusedthesedata toassessthemodelaccuracyonanannualbasis. IncorporatingMTM2009data Sinceourmodelstartedat1985butweknowMTMVFhasoccurredpriortothatdate,we incorporatedthe1976through1984subsetoftheMTM2009dataintoourdataset.Weselected onlythosepixelsidentifiedasminesin1976or1984fromtheMTM2009dataandspatially appendedthemtoour1985through2015cumulativeminingdataset.Wethusgenerateda “first-mined”datasetthatrevealswhetheracertainareawasfirstconvertedintoasurfacemine eitherby1976,between1977and1984,orinanyyearfrom1985through2015.Ofnote,many mineslabeledbyMTM2009as“1976”likelystartedatsomeunknowndatepriorto1976,so wecannotpreciselysaywhenthoseearliestminesbegan.Welikewisegenerateda“last-mined” datasetthatsayswhenagivenareawasmostrecentlyanactivemine;however,thisdatasetcan- notshowifagivenareawasonceminedbutbecamereclaimed(i.e.,ceasedmining)andlater becameamineagain.Ourresultsbelowarebasedoffthe“first-mined”datasetortheannual miningdatasetgeneratedinthisstudyalone. Resultsanddiscussion Totalminingextent Between1985and2015,anaverageof87km2ofpreviouslyunminedlandwasconvertedtoa surfacemineinanygivenyear,withthisannualrateofchangevaryingfromalowof31km2 yr-1in2015to116km2yr-1in1999(Fig3C).Overtime,thisaddsuptoatotalofapproxi- mately2,900km2(orapproximately3.5percent)ofCentralAppalachiathathasbeenpartof anactivesurfacecoalmineatsomepointbetween1985through2015(Fig3B).Ratesofboth newmineareaexpansionandcoalproduction(Fig3C&3D)havedroppedoffprecipitously since2010. PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 6/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Fig3.Activemining,cumulativemining,andcoalproductionovertime.“ActiveMining”(A)meansanylandarea detectedbyourmodelaslikelymineforthegivenyear;“CumulativeMining”(B)isthenon-duplicativesummationof activemineareaovertime;thissumincludesmineareasidentifiedfrompre-1976through1984fromtheMTM2009 data(seeabove).“Newly-MinedAreas”(C)isthelandareathatwasfirstconvertedintoamineinthegivenyear. “SurfaceCoalProduction”(D)dataisfromtheMineSafetyandHealthAdministration[30]ratherthanourmodel;we presentithereforcomparison. https://doi.org/10.1371/journal.pone.0197758.g003 Thefullscopeofcumulativeminingfrom1976through2015,incorporatingthe1976and 1984subsetoftheMTM2009dataasdiscussedabove,yieldsatotalof5,900km2ofdetectable miningoverthe40-yearperiod(Fig3B).Thistotalindicatesthat3,000km2wasfirstminedin eitherpre-1976or1984.Forcomparison,thecumulativesurfaceminingareafrompre-1976 through2015comprises7.1percentofCentralAppalachia,andis18percentlargerthanthe landareaofthestateofDelawareandonly3.3percentsmallerthantheareaofEverglades NationalPark. Wedemonstratethatcumulativeminingincreasesatanear-linearratefrom1985through 2015,increasingonaverage87km2yr-1(anewmine“conversionrate”frompreviously unminedtominedland).However,between1984(i.e.,theendoftheMTM2009data)and 1985,thiscumulativetotaljumpsmorethan270km2(Fig3B).Inotherwords,ourresultssug- gest270km2oflandpreviouslyunminedthrough1984suddenlybecameaminein1985,but thenthatratedroppedtoanaverageof87km2yr-1after1985. Thisseemingdiscrepancyislikelyaresultofcombiningourminingdetectionalgorithm withtheMTM2009data,andnotasingleyeardramaticincreaseinminingrates.Onone hand,ourstudyareaislargerthanthatoftheMTM2009study.Whilemanyofthelargest mineswereidentifiedbybothstudies,oursomewhatlargerstudyareacouldhavegiventhe appearanceofmuchnewmineareain1985byfindingminessimplynotlocatedwithin MTM2009’sstudyarea.Additionally,weacknowledgethatourautomatedmodelislikely morelenientindecidingifapixelrepresentsaminethanwasthesupervisedclassification approachemployedbytheMTM2009study.Forexample,pixelsontheedgeofalargemine areamayhavebeenlabeledasminesbyourstudybutnon-minesbyMTM2009,leadingtoa furtherincreaseinourarealtotalby1985. PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 7/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia Annualactiveminingextent WhereastheMTM2009studyonlyshowswhereminingoccurredduringsometen-year period,ourstudyrevealstheyearlyareasthatwereactivelybeingmined.Overtheperiod1985 through2015,wefindanaverageof940km2(greaterthan1.1percent)ofthestudyareaunder activemininginanygivenyear(Fig3A).Activeminingrangesfrom610km2to1,300km2per year.Thechangeinactiveminingareaperyearishighlyirregular,rangingfromanadditional 110km2ofminingbetweenoneyearandthenexttoadecreaseof150km2. Toexplainthisirregularchange,however,wefindamoderatelystrong,positiverelationship (r=0.63)betweenthechangeinactivemininginanygivenyearandthechangeincumulative mininginthatyear(Fig4).Thisrelationshipsuggeststhatyearswithmuchactiveminingalso hadmuchnewlyminedland(i.e.,alargeincreaseinthecumulativearea);andthatyearswith littleactivemininghadlittlenewlyminedland(i.e.,asmallincreaseinthecumulativearea).In thisregionofAppalachia,whenminecompaniesputforthheightenedminingeffort,thateffort wentingeneraltowardminingnewlandsratherthanre-miningoldlands.Moreover,we regressedthesedatatoshowthatevery1m2oflandunderactiveminingissignificantlyassoci- atedwith0.22m2ofconversiontonewlyminedarea(p<0.001,r2=0.40).Inotherwords, approximatelyone-fifthofactiveminelandinanygivenyearrepresentsnewlyconvertedarea. Accuracyassessment WefindthatourNDVI-basedmodelaccuratelyandefficientlyrevealsyearlyminingextent (S1Table).OuraccuracyassessmentyieldedvaluesfortheCohen’sKappacoefficientranging Fig4.Annualchangeincumulativeminingversuschangeinactivemining.“ActiveMinedArea”isanyareaper yearwherethemaximumNDVIobservedinthatyearwaslessthantheNDVIthresholdsetpercountyperyear. “CumulativeArea”isthesummationofuniqueactivemineareaovertime;ifsomelocationwasidentifiedasactive mineinoneyear,itsareawouldnotbeaddedagaintothecumulativeminingtotalinfutureyears.Each1m2oflandin activeminingisassociatedwith0.22m2ofnewlyminedarea. https://doi.org/10.1371/journal.pone.0197758.g004 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 8/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia from0.62to0.93peryear.Thesepositivevaluessuggestthat,inallcases,ourmodelperforms 62to93percentbetterthanrandomchance.Wealsofindthattheuser’saccuracyofmined pointsforeachyearisatleast0.83orhigher,indicatingthatatleast83percentofpixelslabeled asminesactuallyrepresentminesontheground.Ofthe31yearsanalyzed,21yearshavemine useraccuracyvaluesgreaterthanorequalto0.90. Comparisontomineproductiondata Asawaytoassessourmodelresultsandtoexplorerelationshipsbetweenextractionanddis- turbance,weinvestigatedthedegreetowhichourmineareatotalsarecorrelatedwithknown coalproductionfromsurfaceminesinCentralAppalachia.Theoretically,thelandimpactsof anyincreaseordecreaseinproductionfromsurfaceminesshouldshowupinourmineextent data,butwithalagbetweenproductionandtheassociatedactiveminingarea.Alaglikely existsbecauseittakesyearsforaclearedareatorevegetate—particularlyanareathathas undergonethehighintensityofdisturbancecausedbyasurfacecoalmine.Moreover,ina largeoperationlikeamountaintopminewheremultiplecoalseamsmaybeminedsucces- sively,anareamaycontinuetobeminedforseveralyearsasminecompaniesblastanddig throughhundredsoffeetofelevationtoaccessallofthecoalseams. WeacquiredcoalproductiondataprovidedquarterlytotheMineSafetyandHealth AdministrationbyallminingcompaniesoperatingintheU.S.[30].Thesedatareporthow muchcoalwasproducedbydifferentminingtechniquessuchasundergroundminingand stripmining.Forthisstudy,weonlyusedproductiondatareportedfromCentralAppalachian "strip"mines,astheothertechniqueshaveverylittlesurfaceimpactpertonofcoalproduced. Weregressedyearlymineproductionquantitieswithareainactivemining,initiallyfinding virtuallynomodelfitwhenassumingnotimelag(r2=0.093;p<0.1).Bylaggingactivemine areaby5years,however,themodelfitdramaticallyimproved(r2=0.68;p<0.0001)(Fig5); Fig5.Yearlymineproductionversusactiveminearea,withandwithouta5-yeartimelag.Ratesofcoalproduction fromsurfacecoalminesintheregionarecomparedtothescaleofactiveminingestimatedinthesameyear(red circles)andfiveyearspreviously(blackcircles).Thereisnorelationshipwhendataareanalyzedfromthesameyear, buttheamountofcoalproducedfiveyearsearlierexplains68%ofthevarianceinactiveminingarea(regressionfit showninbluewith95%confidenceintervalingray). https://doi.org/10.1371/journal.pone.0197758.g005 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 9/15 MappingtheyearlyextentofsurfacecoalmininginCentralAppalachia thecorrelationsfor4and6yearsweresimilarinfit,so5yearsrepresentstheaveragetimefor theimprintofcoalextractiontoremainonthelandscape,asdefinedbyourNDVIthresholds. Inotherwords,theamountofcoalproducedtodaycanpredicttheamountofareathatwillbe categorizedas“activemining”5yearsintothefuture. Usingthis5-yearregressionmodel,wedeterminedthatacrossAppalachiafortheperiod from1985through2015,foreverymetrictonofcoalproduced,approximately12m2oflandis activelymined.Thisstatisticdoesnotindicatewhetherthe12m2landdisturbanceisareapre- viouslyminedornot,butnonethelessindicatestheactivemineareanecessarytoproducea certainamountofcoal.Forcomparison,apreviousstudyofAppalachiansurfaceminingused adecadalmineextentdatasettodeterminethata1metrictonproductionofcoalwasassoci- atedwith0.96m2oflanddisturbance[3].Thatourmodelpointstogreaterthanamagnitude moreofareaminedpermetrictonislikelyexplainedbyadifferenceinmethodsandstudy area.Thepriorstudy[3]regressedtotalmineproductionpercountyovera20-yearperiod againstdisturbedminearea,whereasweregressedyearlymineproductionacrosstheentire studyareaagainstyearlydisturbedarea.Moreover,thepriorstudy[3]onlyinvestigatedcoun- tiesinKentuckyandWestVirginia,thetwostateswiththegreatestcoalproductionandmin- ingarea,whereaswealsoincludedcountiesinVirginiaandTennessee.Inshort,wehavea finertemporalresolutionbutawiderspatialextent,indicatingtypicallyacrossAppalachiathat 12m2ofactivemineareaisnecessarypermetrictonofcoal.Forthecoal-richstatesofKen- tuckyandWestVirginia,however,perhapslesslandareaisrequiredforthesamequantityof coal. Wealsoinvestigatedthetrendofthisratioofactivemineareapermetrictonofcoalbyyear (Fig6).Wefindthisratioremainsrelativelylowfrom1985throughapproximately1997, Fig6.Ratioofactiveminelandpermetrictonofcoalproducedovertime. https://doi.org/10.1371/journal.pone.0197758.g006 PLOSONE|https://doi.org/10.1371/journal.pone.0197758 July25,2018 10/15

Description:
Surface mining for coal has taken place in the Central Appalachian region of the .. scene (i.e., image) for data abnormalities or cloud cover; determined the .. Expounds upon the methods and dis- cussion presented here. (PDF).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.