Springer Tracts in Modern Physics Volume 244 Managing Editor G. Höhler, Karlsruhe, Germany Series Editors A. Fujimori, Tokyo, Japan J. Kühn, Karlsruhe, Germany Th. Müller, Karlsruhe, Germany F. Steiner, Ulm, Germany W. C. Stwalley, Storrs, CT, USA J. E. Trümper, Garching, Germany P. Wölfle, Karlsruhe, Germany For furthervolumes: http://www.springer.com/series/426 Springer Tracts in Modern Physics SpringerTractsinModernPhysicsprovidescomprehensiveandcriticalreviewsoftopicsof current interest in physics. The following fields are emphasized: elementary particle physics, solid-state physics,complex systems, andfundamental astrophysics. Suitablereviewsofotherfieldscanalsobeaccepted.Theeditorsencourageprospective authorstocorrespondwiththeminadvanceofsubmittinganarticle.Forreviewsoftopics belonging to the above mentioned fields, they should address the responsible editor, otherwise themanagingeditor. See alsospringer.com ManagingEditor Solid-State Physics, Editors Gerhard Höhler AtsushiFujimori Editor forThe PacificRim InstitutfürTheoretischeTeilchenphysik KarlsruheInstitutfürTechnologieKIT DepartmentofPhysics Postfach6980 UniversityofTokyo 76128Karlsruhe,Germany 7-3-1Hongo,Bunkyo-ku Phone:+49(721)6083375 Tokyo113-0033,Japan Fax:+49(721)370726 Email:[email protected] Email:[email protected] http://wyvern.phys.s.u-tokyo.ac.jp/ www-ttp.physik.uni-karlsruhe.de/ welcome_en.html Elementary Particle Physics, Editors Peter Wölfle Johann H.Kühn InstitutfürTheoriederKondensiertenMaterie InstitutfürTheoretischeTeilchenphysik KarlsruheInstitutfürTechnologieKIT KarlsruheInstitutfürTechnologieKIT Postfach6980 Postfach6980 76049Karlsruhe,Germany 76049Karlsruhe,Germany Phone:+49(721)6083590 Phone:+49(721)6083372 Fax:+49(721)6087779 Fax:+49(721)370726 Email:peter.woelfl[email protected] Email:[email protected] www-tkm.physik.uni-karlsruhe.de www-ttp.physik.uni-karlsruhe.de/~jk Complex Systems, Editor ThomasMüller Frank Steiner InstitutfürExperimentelleKernphysik InstitutfürTheoretischePhysik KarlsruheInstitutfürTechnologieKIT UniversitätUlm Postfach6980 Albert-Einstein-Allee11 76049Karlsruhe,Germany 89069Ulm,Germany Phone:+49(721)6083524 Phone:+49(731)5022910 Fax:+49(721)6072621 Fax:+49(731)5022924 Email:[email protected] Email:[email protected] www-ekp.physik.uni-karlsruhe.de www.physik.uni-ulm.de/theo/qc/group.html Fundamental Astrophysics, Editor Atomic, Molecularand OpticalPhysics JoachimTrümper William C. Stwalley Max-Planck-InstitutfürExtraterrestrische UniversityofConnecticut Physik DepartmentofPhysics Postfach1312 2152HillsideRoad,U-3046 85741Garching,Germany Storrs,CT06269-3046,USA Phone:+49(89)30003559 Phone:+1(860)4864924 Fax:+49(89)30003315 Fax:+1(860)4863346 Email:[email protected] Email:[email protected] www.mpe-garching.mpg.de/index.html www-phys.uconn.edu/faculty/stwalley.html Martin Greiter Mapping of Parent Hamiltonians From Abelian and non-Abelian Quantum Hall States to Exact Models of Critical Spin Chains 123 MartinGreiter Institutfür Theorieder Kondensierten Materie(TKM) Karlsruhe Institutfür Technologie(KIT) Campus Süd Karlsruhe Germany e-mail: [email protected] ISSN 0081-3869 e-ISSN1615-0430 ISBN 978-3-642-24383-7 e-ISBN978-3-642-24384-4 DOI 10.1007/978-3-642-24384-4 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2011940032 (cid:2)Springer-VerlagBerlinHeidelberg2011 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,in itscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliableto prosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamar,Berlin/Figueres Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To Elke, Luisa, and Raphaela Preface Theimmediateadvancewecommunicatewiththismonographisthediscoveryof an exact model for a critical spin chain with arbitrary spin S, which includes theHaldane–ShastrymodelasthespecialcaseS¼1:ForS(cid:2)1,weproposethatthe 2 spinonexcitationsobeyaone-dimensionalversionofnon-Abelianstatistics,where thetopologicaldegeneraciesareencodedinthefractionalmomentumspacingsfor thespinons.Themodelanditsproperties,however,arenottheonly,andpossiblynot eventhemostimportantthingonecanlearnfromtheanalysiswepresent. Thebenefitofsciencemaybethatithonorsthehumanspirit,givespleasureto those who immerse themselves in it, and pragmatically, contributes to the improvement of the human condition in the long term. The purpose of the indi- vidual scientific work can hence be either a direct contribution to this improve- ment,ormoreoftenanindirectcontributionbymakinganadvancewhichinspires further advances in a field. When we teach Physics, be it in lectures, books, monographs, or research papers, we usually teach what we understand, but rarely spend much effort on teaching how this understanding was obtained. The first volume of the famed course of theoretical physics by L. D. Landau and E.M.Lifshitz[1],forexample,beginsbystatingtheprincipleofleastaction,but does nothing to motivate how it was discovered historically or how one could be ledtodiscoveritfromthestudyofmechanicalsystems.Thisreflectsthatweteach our students how to apply certain principles, but not how to discover or extract such principles from a given body of observations. The reason for this is not that we are truely content to teach students of physics as if they were students of engineering,butthatthecreativeprocessinphysicsisusuallyerraticandmessy,if not plainly embarrassing to those actively involved, and hence extremely difficult torecapture.Aswithmostofwhathappensinreality,theactualpathsofdiscovery are usuallyhighly unlikely.Since we enjoy the comfort ofperceiving actions and eventsasmorelikelyandsensible,ourmindssubconsciouslyfilterourmemoryto this effect. One of the first topics I immersed myself in after completing my graduate coursework was Laughlin’s theory of the fractionally quantized Hall effect [2]. vii viii Preface I have never completely moved away from it, as this work testifies, and take enormousdelightwheneverIrecognizequantumHallphysicsinotherdomainsof physics. More important than the theory itself, however, was to me to understand and learn from the way R. B. Laughlin actually discovered the wave function. He numerically diagonalized a system of three electrons in a magnetic field in an open plane, and observed that the total canonical angular momentum around the origin jumped by a factor of three (from 3(cid:2)hto9(cid:2)h) when he implemented a Cou- lombinteractionbetweentheelectrons.Atthesametime,nolesserscientiststhan D.Yoshioka,B.I.Halperin,andP.A.Lee[3]had,inanheroiceffort,diagonalized up to six electrons with periodic boundary conditions, and concluded that their data were ‘‘supportive of the idea that the ground state is not crystalline, but a translationally invariant ‘‘liquid.’’’’ Their analysis was much more distinguished and scholarly, but unfortunately, did not yield the wave function. ThemessageIlearnedfromthisepisodeisthatitisoftenbeneficialtoleavethe path of scholarly analysis, and play with the simplest system of which one may hopethatitmightgiveawaynaturesthoughts.FortheLaughlinseriesofquantized Hall states, this system consisted of three electrons. I spend most of my scientific lifeadaptingthisapproachtoitinerantantiferromagnetsintwodimensions,where I needed to go to twelve lattice sites until I could grasp what nature had in mind. But I am digressing. To complete the story about the discovery of the quantum Hall effect, Laughlin gave a public lecture in Amsterdam within a year of having received the Nobel price. He did not mention how he discovered the state, and at first couldn’t recall it when I asked him in public after the lecture. As he was answering other questions, he recalled the answer to mine and weaved it into the answer of another question. During the evening in a cafe, a very famous Russian colleague whom I regard with the utmost respect commented the story of the discovery with the words ‘‘But this is stupid!’’. Maybeitis.Ifitisso,however,theindependentdiscoveriesofthespin1model 2 by F. D. M. Haldane [4] and B. S. Shastry [5] may fall into the same category. Unfortunately, Ido notknow much about these discoveries. Haldanetold me that he first observed striking degeneracies when he looked at the model for N = 6 sites numerically, motivated by the fact that the 1/r2 exchange is the discrete Fourier transform of (cid:2)ðkÞ¼kðk(cid:3)2pÞ in one dimension. Shastry told me that he discovered it ‘‘by doing calculations’’, which is not overly instructive to future generations. If my discovery of the general model I document in this monograph willbeperceivedinthespiritofmyfriendscomment,Iwillatleasthavemadeno attempt to evade the charge. In short, what I document on these pages is not just an exact model, but a preciseandreproducibleaccountofhowIdiscoveredthismodel.Thisreflectsmy belief that the path of discovery can be as instructive to future generations as the model itself. Of course, the analysis I document does not fully reflect the actual pathofdiscovery,butwhatwouldhavebeenthepathifmythinkinghadfollowed astraightline.Ittookmeaboutfourweekstoobtainalltheresultsandaboutfour months to write this monograph. The reason for this discrepancy is not that my Preface ix writingproceedsslowly,butthatIhadleftoutmanyintermediatestepswhenIdid the calculation. The actual path of discovery must have been highly unlikely. In any event, it is comforting to me that, now that I have written a scholarly and coherent account of it, there is little need to recall what actually might have happened. I am deeply grateful to Ronny Thomale for countless discussions and his criticalreadingofthemanuscript,toBurkhardScharfenberger,DirkSchuricht,and Stephan Rachel for collaborations on various aspects of quantum spin chains, to RoseSchremppandthemembersoftheInstituteforTheoryofCondensedMatter at KIT for providing me with a pleasant and highly stimulating atmosphere, and especially to Peter Wölfle for his continued encouragement and support. I further wish to thank Ms. Ute Heuser from Springer for her highly profes- sional handling of the publication process. Karlsruhe, April 2011 Martin Greiter References [1]L.D.Landau,E.M.Lifshitz,Mechanics(Butterworth-Heinemann,Oxford,1982) [2]R.B.Laughlin,Anomalousquantumhalleffect:anincompressiblequantumfluidwithfractionally chargedexcitations.Phys.Rev.Lett.50,1395(1983) [3]D.Yoshioka,B.I.Halperin,P.A.Lee,Groundstateoftwo-dimensionalelectronsinstrongmagnetic fieldsand1quantizedhalleffect.Phys.Rev.Lett.50,1219(1983) 3 [4] F.D.M. Haldane, Exact Jastrow–Gutzwiller resonant-valence-bond ground state of the spin-1 2 antiferromagneticHeisenbergchainwith1/r2exchange.Phys.Rev.Lett.60,635(1988) [5] B.S. Shastry, Exact solution of an S¼1 Heisenberg antiferromagnetic chain with long-ranged 2 interactions.Phys.Rev.Lett.60,639(1988) Contents 1 Introduction and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Three Models and a Ground State . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 The Laughlin State and Its Parent Hamiltonian. . . . . . . . . . . . . 11 2.1.1 Landau Level Quantization in the Planar Geometry . . . . 11 2.1.2 The Laughlin State . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 Fractionally Charged Quasiparticle Excitations. . . . . . . . 18 2.1.4 Fractional Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.5 Landau Level Quantizationinthe Spherical Geometry. . . 22 2.1.6 The Laughlin State and Its Parent Hamiltonian on the Sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 The Haldane–Shastry Model. . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 The 1=r2 Model of Haldane and Shastry . . . . . . . . . . . . 29 2.2.2 Symmetries and Integrability . . . . . . . . . . . . . . . . . . . . 30 2.2.3 Ground State Properties. . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.4 Explict Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Factorization of the Hamiltonian. . . . . . . . . . . . . . . . . . 38 2.2.6 Spinon Excitations and Fractional Statistics. . . . . . . . . . 41 2.2.7 Young Tableaux and Many Spinon States . . . . . . . . . . . 45 2.3 The Moore–Read State and Its Parent Hamiltonian . . . . . . . . . . 47 2.3.1 The Pfaffian State and Its Parent Hamiltonian . . . . . . . . 47 2.3.2 Quasiparticle Excitations and the Internal Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.3 Majorana Fermions and Non-Abelian Statistics. . . . . . . . 51 2.3.4 The Pfaffian State and Its Parent Hamiltonian on the Sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.4 An S¼1 Spin Liquid State Described by a Pfaffian. . . . . . . . . . 57 2.4.1 The Ground State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.4.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 xi xii Contents 2.4.3 Schwinger Bosons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4.4 Generation by Projection from Gutzwiller States . . . . . . 62 2.4.5 Topological Degeneracies and Non-Abelian Statistics . . . 64 2.4.6 Generalization to Arbitrary Spin S . . . . . . . . . . . . . . . . 67 2.4.7 Momentum Spacings and Topological Degeneracies for Arbitrary Spin S . . . . . . . . . . . . . . . . . . . . . . . . . . 68 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3 From a Laughlin State to the Haldane–Shastry Model . . . . . . . . . 79 3.1 General Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.1.1 Comparison of the Models. . . . . . . . . . . . . . . . . . . . . . 79 3.1.2 A Hole at a Pole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 Hilbert Space Renormalization . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 Fourier Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.3.1 Particle Creation and Annihilation Operators . . . . . . . . . 86 3.3.2 Renormalized Matrix Elements. . . . . . . . . . . . . . . . . . . 87 3.3.3 An Alternative Derivation . . . . . . . . . . . . . . . . . . . . . . 90 3.4 The Defining Condition for the Gutzwiller State. . . . . . . . . . . . 91 3.4.1 Annihilation Operators. . . . . . . . . . . . . . . . . . . . . . . . . 91 3.4.2 Direct Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4.3 The Role of the Hole. . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.5 Rotations and Spherical Tensor Operators . . . . . . . . . . . . . . . . 94 3.5.1 Representations of Rotations . . . . . . . . . . . . . . . . . . . . 94 3.5.2 Tensor Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.5.3 Products of Tensor Operators. . . . . . . . . . . . . . . . . . . . 96 3.6 Construction of a Parent Hamiltonian for the Gutzwiller State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.6.1 Translational, Time Reversal, and Parity Symmetry . . . . 98 3.6.2 Spin Rotation Symmetry . . . . . . . . . . . . . . . . . . . . . . . 100 3.6.3 An Alternative Derivation . . . . . . . . . . . . . . . . . . . . . . 101 3.7 The Rapidity Operator and More. . . . . . . . . . . . . . . . . . . . . . . 102 3.7.1 Annihilation Operators Which Transform Even Under T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.7.2 Annihilation Operators Which Transform Odd Under T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4 From a Bosonic Pfaffian State to an S¼1 Spin Chain. . . . . . . . . . 109 4.1 General Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.1.1 A Model and a Ground State . . . . . . . . . . . . . . . . . . . . 109 4.1.2 Creation of a Quasihole. . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Hilbert Space Renormalization . . . . . . . . . . . . . . . . . . . . . . . . 112
Description: