ebook img

Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series PDF

24 Pages·2017·3.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series

remote sensing Article Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series FabianLöw1,2,* ID,AlexanderV.Prishchepov3,4,5,FrançoisWaldner6,7,OlenaDubovyk8, AkmalAkramkhanov1 ID,ChandrashekharBiradar1andJohnP.A.Lamers8 1 InternationalCentreforAgriculturalResearchinDryAreas(ICARDA),11431Cairo,Egypt; [email protected](A.A.);[email protected](C.B.) 2 MapTailorGeospatialConsulting,53113Bonn,Germany 3 DepartmentofGeosciencesandNaturalResourceManagement(IGN),UniversityofCopenhagen, 1165København,Denmark;[email protected] 4 LeibnizInstituteofAgriculturalDevelopmentinTransitionEconomies(IAMO), 06120Halle(Saale),Germany 5 InstituteofEnvironmentalSciences,KazanFederalUniversity,420008Kazan,Russia 6 EarthandLifeInstitute-Environment,UniversitéCatholiquedeLouvain,2CroixduSud, 1348Louvain-la-Neuve,Belgium;[email protected] 7 CSIROAgriculture&Food,306CarmodyRoad,StLucia,QLD4067,Australia 8 DepartmentofGeography,Rheinische-Friedrich-Wilhelms-Universität,53113Bonn,Germany; [email protected](O.D.);[email protected](J.P.A.L.) * Correspondence:[email protected] Received:18November2017;Accepted:16January2018;Published:23January2018 Abstract: Croplandabandonmentisgloballywidespreadandhasstrongrepercussionsforregional foodsecurityandtheenvironment. Statisticssuggestthatoneofthehotspotsofabandonedcropland islocatedinthedrylandsoftheAralSeaBasin(ASB),whichcoverspartsofpost-SovietCentralAsia, AfghanistanandIran. Todate,theexactspatialandtemporalextentsofabandonedcroplandremain unclear,whichhampersland-useplanning. Abandonedlandisapotentiallyvaluableresourcefor alternativelanduses. Here,wemappedtheabandonedcroplandinthedrylandsoftheASBwitha timeseriesoftheNormalizedDifferenceVegetationIndex(NDVI)fromtheModerateResolution ImagingSpectroradiometer(MODIS)from2003–2016. Toovercometherestrictedabilityofasingle classifiertoaccuratelymapland-useclassesacrosslargeareasandagro-environmentalgradients, “stratum-specific”classifierswerecalibratedandclassificationresultswerefusedbasedonalocally weighteddecisionfusionapproach. Next,theagro-ecologicalsuitabilityofabandonedcroplandareas was evaluated. The stratum-specific classification approach yielded an overall accuracy of 0.879, whichwassignificantlymoreaccurate(p<0.05)thana“global”classificationwithoutstratification, whichhadanaccuracyof0.811. In2016,theclassificationresultsshowedthat13%(1.15Mha)of theobservedirrigatedcroplandintheASBwasidle(abandoned). Croplandabandonmentoccurred mostly in the Amudarya and Syrdarya downstream regions and was associated with degraded landandareaspronetowaterstress. Despitethealmosttwofoldpopulationgrowthandincreasing food demand in the ASB area from 1990 to 2016, abandoned cropland was also located in areas withhighsuitabilityforfarming. Themapofabandonedcroplandareasprovidesanovelbasisfor assessingthecausesleadingtoabandonedcroplandintheASB.Thiscontributestoassessingthe suitabilityofabandonedcroplandforfoodorbioenergyproduction,carbonstorage,orassessingthe environmentaltrade-offsandsocialconstraintsofrecultivation. Keywords: abandonedcropland;AralSeaBasin;changedetection;landuse;decisionfusion;MODIS RemoteSens.2018,10,159;doi:10.3390/rs10020159 www.mdpi.com/journal/remotesensing RemoteSens.2018,10,159 2of24 1. Introduction Agricultural production must sustainably increase to meet the growing food demand while preservingecosystemservicesandbiodiversity[1,2]. Giventhe(global)limitsofcroplandexpansion, approximately80%ofthisincreasemustcomefromintensificationsuchastheexpansionofirrigated cropproduction[3–5],whichalreadycontributestoapproximately44%ofglobalcropproduction[1]. OneoftheregionswhereagriculturallandsarescarceisthetransboundaryAralSeaBasin(ASB), whichcoverspartsofpost-SovietCentralAsia(Uzbekistan,Kazakhstan,Kyrgyzstan,Tajikistanand Turkmenistan), Afghanistan and Iran. This region experienced precipitous population growth in thementionedcountries,increasingfrom61millionpeoplein1990to104millionby2016;therural populationisstronglydependentonthedomesticagriculturalproduction[6]. Despiteincreasingfood demand,officialstatisticsandexemplarycasestudieswithsatelliteimagerysuggestthatagricultural landabandonmentiscommoninthisregionandmostlikelyoccursondegraded,irrigatedagricultural lands[7–10]. Duetoeconomicrestructuring,agriculturallandabandonmentprimarilyoccursinthe downstreamAmudaryaandSyrdaryaRiverbasinsresemblingSovietland-uselegacies. Additionally, large tracts of cropland in Afghanistan that partly belong to the ASB were left fallow, for reasons includingconflictsandwar[11]. Currently,theloomingscarcityofwaterresourcesandongoingland degradation[12,13]mayfurtherenhanceabandonment,causingadversesocio-economicconsequences, includingreducedincomeorincreasedfoodinsecurity[14,15]. A better understanding of the spatial and temporal patterns of abandonment and idle land production potential is important to better assess the drivers of land-use change for developing plausible land-use policies [16–18] and assess the impacts on the carbon cycle [19] as well as the trade-offsbetweentherecultivationortheprovisionofecosystemservices[20]. Arevitalizationof currentlyabandonedlandcouldbecomeparticularlyplausibleinareaswheresignificantinvestments were made during the Soviet era to establish an irrigation and drainage infrastructure [21,22]. The potential for recultivation depends, however, on the biophysical properties of soils and the landsuitabilityitself[23,24]. The main problem is that agricultural statistics for the ASB are often outdated or of doubtful quality and little knowledge exists about the spatial extent of agricultural land abandonment in theASB.Remotesensingisawell-knownalternativetoassesslarge-scaleland-usechange. Much progress has been made in mapping land-use/land-cover changes (LULCCs) in drylands using geographicinformationsystems(GIS)andremotesensing,suchaswith30-mmultiannualimagery fromLandsat[25,26],high-resolutionRapidEyeorSentinel[7,27,28]and250-mModerateResolution ImagingSpectroradiometer(MODIS)data[29,30]. MODISdatafitwellforassessingandmapping LULCC and crop types [31] or land abandonment over large regions in a regular manner [32–35]. Additionally, since fallow periods can be part of the typical crop rotation cycle, it is important to assessseveralconsecutiveyearstodeterminewhetherafieldhaseffectivelybeenabandonedorif itisawaitingfutureuse[7]. Usingregular,consecutiveimagetimeseriessuchasthoseprovidedby MODIShelpsavoidmisclassificationoftemporarilyfallow-croprotation[7,29]. Machine-learningclassifierswerefoundtobeparticularlyusefultoovercomethecomplexity related to the accurate separation of spectrally similar classes, such as abandoned cropland and cultivated cropland in drylands [36], particularly at the early stages of abandonment [7,29,33,37]. Vegetation recovery on abandoned irrigated fields in the drylands of the ASB generally follows a certainpathway. Itstartswiththerecoveryofannualandmultiyearherbaceousspecies[8,38,39]and gradually,perennialwoodyspeciessuchasshrubs(e.g.,blacksaxaul)andsometrees[7]canestablish. Dependingontimeandhydrologicalandsoilproperties,bareareaswithoutanyvegetationchange couldalsobeobserved[8,24]. Abandoned, formerlyirrigatedcroplandindrylandsmaytherefore represent a set of multimodal distributions of reflectance for different wavelengths recorded with opticalsatelliteimagery. Apreviousstudypointedtotheneedtohavevariousinputdatasetsand non-parametricmachinelearningalgorithmstomapabandonedcropland[29]. RemoteSens.2018,10,159 3of24 Todate, LULCCapproacheshavereliedprimarilyonsingleclassificationmethods; thus, low accuracies were often found for LULCC in drylands [36] due to difficulties in mapping spectrally complexclassesacrosslargeareaswithdifferentagro-environmentalsettings[40]. Thephysiography andtypeofplantsuccessioninabandonedareasposechallengestoaccuratelymappingabandoned croplandacrosslargeterritoriesovertime[7,29,30].Croplandabandonmentcanalsobeassociatedwith bothnegative(degradationofvegetation)andpositive(vegetationrecovery)vegetationtrends[41,42]. Thus,despitethegeneralsuitabilityof“global”methodsforlandcovermapping[43,44],theyhaveless accurateperformancesthanlocallycalibratedmodelsforlandcovermapping[45–48]andcapturing accuratelyalldivergingtrajectoriesofland-coverchange. Similarly,croprotationpracticesmaydiffer fromcountrytocountry,reflectingdifferentland-usepolicies,regionalfoodsecurityprogramsand marketconditions. Itmayposeanadditionalchallengeinthegeneralizationofspectralfeaturesfora singleclassificationacrossalargearea[36]. Atthesametime,afusionofmachine-learningclassifiers basedonstrata(e.g.,soiltypes,landforms,administrativeboundariesandfurtherstratum-specific classifiers)mayboostclassificationaccuracy,particularlywhereoneclassifierisnotabletoaccurately separateclasses[36]. However,mapscreatedwithdifferentclassificationmethodsbutwithsimilar accuraciesmayyieldspatialdisagreementofclassifiedpatterns,i.e.,errorsarerarelyequallydistributed inamap[49–51]. Thus,amajorchallengeformappinglarge-scale,abandonedcroplandistoachieve spatialcontinuityandconsistencyinthefinalmap. The overarching objective of this study was to develop a method that can map the various trajectories (spectral signatures) of cropland abandonment and to create the first map of cropland abandonmentacrosstheASB.Specifically,we(i)testedwhetheradecisionfusionyieldedastatistically significantdifference(p<0.05)comparedtosingleclassificationmethods,(ii)allocatedthehotspots ofabandonedcroplandandstablecultivatedcroplandsand(iii)relatedthepatternsofabandoned cropland to crop suitability. To achieve our goals, we combined the principle of random feature selectionwithstratifiedclassifiersinanovelfashiontocreateaspatiallyconsistentmapofcropland abandonmentintheASB.Westratifiedthestudyregionbasedontheadministrativeboundariesand stratum-specificclassifierswerecalibratedtomapabandonedcroplandduringthe2003–2016period basedonMODISNormalizedDifferenceVegetationIndex(NDVI)timeseries. 2. MaterialsandMethods 2.1. StudyArea ThestudyareacoveredtheagriculturalareasoftheASB,avasttransboundaryriverbasinatthe heartoftheEurasiancontinent[52]. Itspreadsover1.76millionkm2andencompassesthesouthern partofKazakhstan,Turkmenistan,Uzbekistan,Kyrgyzstan,TajikistanandsmallpartsofAfghanistan andIranintheTedzhen/MurghabBasin. Allofthesecountries,exceptAfghanistanandIran,were oncepartoftheformerSovietUnion(CentralAsia)[53]. Theclimateintheirrigatedregionsofthe ASB is mostly dry-arid continental with 100–250 mm of precipitation per year, which mainly falls duringthewinter(December-February). Precipitationinthemountainscanexceed1,000mm. Because of the aridity, agriculture in the study area is fully dependent on a dense irrigation and drainage network[13], whichwasextensivelydevelopedduringtheSovietera[54]. Therefore, agricultural landispredominantlylocateddownstreamoftheAmudaryaandSyrdaryaRivers. Morethanhalfthe meanannualrunoffintheASB,whichisapproximately114km3,isgeneratedinTajikistanandalmost one-quarterisgeneratedinKyrgyzstan[52]. Alargeshareofthefreshwaterintheseriversisfedinto irrigationsystemsof~8.1–8.5Mhaofcropland[55,56]. Today,irrigatedproductionisdominatedby cottonandwheatproduction[57]inareassuchasinTurkmenistan[58]andUzbekistan[59]. Riceisan importantcropinareassuchassouthKazakhstan[7,60]. TheaveragefieldsizesthroughouttheASB rangefrom2.19ha(Karakalpakstan)to6.74ha(Fergana)[40]. The post-Soviet countries within the ASB have undergone large transitions in their economy andagriculturalproductionafterindependencein1991(Table1). DuringtheSovietera,thetypical RemoteSens.2018,10,159 4of24 crop rotation in Uzbekistan, for instance, was three years of alfalfa followed by six years or more of cotton. The crop rotation changed after the independence in 1991; the share of alfalfa and especially cotton decreased in favor of winter wheat [61,62]. In southern Kazakhstan, the official recommendations [38,61,63,64] may vary following the soil quality [59,65]. However, in southern Kazakhstan,riceandalfalfaformadistinctrotationpattern,whichdiffersfromUzbekistan: aftertwo yearsReomfotrei Sceensc. u20lt1i8v, 1a0t,i xo FnO,Rfi PeEldERs RaErVeItEeWm porarilysetasidefromcropproduction(mainlyrice)a4n odf 2a5l falfa orotherlegumesarecultivatedforuptothreeconsecutiveyearsforsoilregeneration(Table2). Official statisctuilctsiviantidoinc,a ftieedldas agrrea tdeumaplodrearcilliyn eseot faslaidned fruosme icnroipr rpigroadteudctifioenl d(msabiunltya rlsicoe)a adnedc arlefaaslfea oofr iortrhigera tion legumes are cultivated for up to three consecutive years for soil regeneration (Table 2). Official intensityintheremainingcultivatedfields[10]. statistics indicated a gradual decline of land use in irrigated fields but also a decrease of irrigation 2.2. Dinetfiennsitiitoyn ino fthCer orepmlaanidniAngba cnudltoinvmateendt fields [10]. 2A.2b. aDnedfinointieodn cofr oCprolaplnadndi sAdbaenfidnoendmehnetr eas“croplandpermanentlywithoutmanagement,”i.e.,land thathasnotbeenused(sownbutnotcropped)foraperiodlongerthanthefallowperiodspracticed Abandoned cropland is defined here as “cropland permanently without management,” i.e. land under the typical crop rotations in the region (Table 2, usually four or more years). After the that has not been used (sown but not cropped) for a period longer than the fallow periods practiced succeusnsdioern tohfea tgyrpicicuallt ucrraolpp rrootdatuiocntiso nin, sthhreu bresgaionnd (gTraabslsee s2,e nucsuroaallcyh feoduor nora bmaonrdeo yneeadrsfi).e lAdfst—er otrhefi elds remasiuncecdessbioanre ofa angdricduelvtuoriadl porfodvuegcteiotant,i sohnrudbus eantdo gsraalsisneisz eanticornoa(cFhiegdu orne a1b)a.ndDouneedt ofiealdws—atoerr fisehldosr tage (e.g.,rdemroauingehdt sb)aorre faanrdm deervso’idde ocfis vioegnest,aitniotenr dmuiett teod sfaalilnloizwatpioenr i(oFdigsumrea 1y).b Deuleo ntog ear wthataenr suhnodrteargteh (ee.cgu.,r rent manadgroeumgehntst) porra fcatricmeesr[s2’ 6d]ebciustiosnusc, hinfiteerlmdsittdeod nfaoltlonwe cpeesrsiaordilsy mmaeye btet hloenggievre nthdane fiunnidtieorn thoef acubrarnednto ned. Abanmdaonnaegdemfieenldt spraarceticchesa r[2a6c]t ebruizt esudcbhy fiealdtysp dioc anloat nndecreescsoarginlyi zmaebelte tvhee ggeivtaetni odnefsinuicticoens soifo anb,asntadrotninedg. with Abandoned fields are characterized by a typical and recognizable vegetation succession, starting with therecoveryofannualandmultiyearherbaceousspecies[8,38,39],perennialwoodyspeciessuchas the recovery of annual and multiyear herbaceous species [8,38,39], perennial woody species such as shrubs(e.g.,blacksaxaul)andsometrees[7]. Whenclassifyingafewconsecutiveyears, previous shrubs (e.g., black saxaul) and some trees [7]. When classifying a few consecutive years, previous studieshavedemonstratedthatintermittentfallowperiods,e.g.,aspartofagriculturalmanagement, studies have demonstrated that intermittent fallow periods, e.g., as part of agricultural management, orareasleftfallowduetowatershortage,canobscureland-usetrajectoriesofabandonedfieldsthatin or areas left fallow due to water shortage, can obscure land-use trajectories of abandoned fields that turnleadtomisclassifications[7,29,30]. in turn lead to misclassifications [7,29,30]. Figure 1. Drylands in the Aral Sea Basin and its irrigated agricultural land. The photographs from Figure1.DrylandsintheAralSeaBasinanditsirrigatedagriculturalland.Thephotographsfrom2011 2011 highlight examples of abandoned fields: open (A) and dense (B) shrubland in Karakalpakstan, highlightexamplesofabandonedfields:open(A)anddense(B)shrublandinKarakalpakstan,bare bare soil (C) and dense shrubland mixed with herbaceous vegetation (D) in Kyzyl-Orda, Kazakhstan. soil(C)anddenseshrublandmixedwithherbaceousvegetation(D)inKyzyl-Orda,Kazakhstan. RemoteSens.2018,10,159 5of24 Table1.Summaryofthetransitionapproachesacrossthepost-SovietcountrieswithintheAralSeaBasin. LegalAttitudeto Agriculture,Value ShareofRural PotentialPrivate Allocation Country PrivatizationStrategy* Transferability RelevantLegislation* Added(%GDP) Population Ownershipafter1990* Strategy* after1990* in2014** in2014** PresidentialDecreeonLand Kazakhstan Householdplotsonly None Shares Userights 4.7 47 Reform,Feb.1994 PresidentialDecreeonDeepening LandandAgrarianReform, Kyrgyzstan Allland Distribution/conversion Shares Moratorium Feb.1994Referendum,June1998; 17.1 67 PresidentialDecreeonPrivate LandOwnership,Oct.1998 Landcode,Dec.1996; Tajikistan None None Shares Userights 27.2 73 amended1999 None;virginland Turkmenistan Allland Leasehold None Constitution,May1992 Nodata 50 tofarmers Uzbekistan None None Leasehold None None 18.8 64 Afghanistan Complexpatternoflandmanagementandtenure,shapedbyconflict 23.5 74 Note:*Adaptedwithpermissionfrom[66].**WorldBank. Table2.TypicalcroprotationsforselectedareasintheAralSeaBasin.(Shownisonecompletecycleofeithertherecommendedorthemandatorycroppingscheme). Province Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Source Kazakhstan Kazalinsk Rice Rice Fallow Rice Rice Alfalfa Alfalfa Alfalfa [63] Kyzyl-Orda Rice Rice Alfalfa Alfalfa Alfalfa [60] Uzbekistan Countrywide Cotton* Cotton* Cotton Wheat** Wheat** [61,64] Karakalpakstan*** Wheat/Alfalfa Alfalfa Alfalfa Cotton Cotton Cotton Cotton [38] *2–3yearsofcottonarerecommended [61,64] **1–2yearsofwheatarerecommended,insteadofwheatalsosummercropssuchasmungbean,soybean,maize,sunflowerorvegetablesarecultivated [38] ***ExpertrecommendationforKarakalpakstan;insteadofcottonalsoricecouldbecultivated [38] RemoteSens.2018,10,159 6of24 Remote Sens. 2017, 9, x FOR PEER REVIEW 6 of 25 2.3. SatelliteDataandPreprocessing 2.3. Satellite Data and Preprocessing TTiimmee sseerriieess ooff tthhee NNDDVVII ffrroomm tthhee TTeerrrraa aanndd AAqquuaa MMOODDIISS 225500--mm iinnssttrruummeennttss wweerree ddoowwnnllooaaddeedd ((1166--ddaayy LL33 GGlloobbaall CCoolllleeccttiioonn VV000066,, MMOODD1133QQ11 aanndd MMYYDD1133QQ11)) ffrroomm 22000033 ttoo 22001166 [[6677]].. EEaacchh MMOODDIISS ttiillee pprroovviiddeess wwiiddee ssppaattiiaall ccoovveerraaggee ((22333300 kkmm)),, aa ddeennssee ffrreeqquueennccyy ooff oobbsseerrvvaattiioonnss aanndd aa lloonngg--tteerrmm aarrcchhiivvee [[88,,2299]].. FFoouurr 22333300 kkmm ×× 22333300 kkmm MMOODDIISS ttiilleess ((hh2222vv0044,, hh2233vv0044,, hh2222vv0055 aanndd hh2233vv0055)) wweerree nneecceessssaarryy ttoo ccoovveerr tthhee ssttuuddyy aarreeaa ((FFiigguurree 11)).. OOvveerraallll,, 4466 iimmaaggeess ffrroomm bbootthh tthhee TTeerrrraa aanndd AAqquuaa ppllaattffoorrmmss wweerree aavvaaiillaabbllee ffoorr eeaacchh yyeeaarr aanndd ssttaacckkeeddi innttoo1 144a annnnuuaallt tiimmees seerriieess.. SSeevveerraall pprreepprroocceessssiinngg sstteeppss rreedduucceedd tthhee eeffffeeccttss ooff rreessiidduuaall cclloouuddss aanndd sshhaaddoowwss,, dduusstt,, aaeerroossoollss,, ooffff--nnaaddiirr vviieewwiinngg oorr llooww ssuunn zzeenniitthh aanngglleess.. FFiirrsstt,, wwee eexxcclluuddeedd ppiixxeellss flflaaggggeedd aass nnoo ddaattaa aanndd eexxcclluuddeedd ssnnooww//iiccee oorr cclloouuddss iinn tthhee MMOODD1133QQ11 ppiixxeell rreelliiaabbiilliittyy llaayyeerr pprriioorr ttoo fifilltteerriinngg bbaasseedd oonn MMOODDIISS qquuaalliittyy aassssuurraannccee iinnffoorrmmaattiioonn.. OOnnllyy ppiixxeellss llaabbeelleedd ““ggoooodd ddaattaa”” oorr ““mmaarrggiinnaall ddaattaa”” wweerree rreettaaiinneedd.. SSeeccoonndd,, tthhee NNDDVVII ttiimmee sseerriieess wweerree ssmmooootthheedd uussiinngg tthhee SSaavviittzzkkyy--GGoollaayy aapppprrooaacchh[ [6688]].. SSiinnccee aa ggaaiinn ooff ccllaassssiifificcaattiioonn aaccccuurraaccyy wwaass oobbsseerrvveedd wwhheenn ccoommbbiinniinngg pphheennoollooggiiccaall mmeettrriiccss wwiitthh rraaww ttiimmee--sseerriieess ddaattaa [[2299,,6699]],, sseevveerraall mmeettrriiccss wweerree ccoommppuutteedd wwiitthh TTIIMMEESSAATT aanndd sseerrvveedd aass pprreeddiiccttoorr vvaarriiaabblleess ffoorr tthhee ffoolllloowwiinngg ccllaassssiifificcaattiioonnss ((FFiigguurree 22)):: ((aa)) aa mmeeddiiaann NNDDVVII vvaalluuee ooff tthhee ggrroowwiinngg sseeaassoonn,, ((bb)) 2255%% aanndd 7755%% qquuaarrttiilleess ooff tthhee NNDDVVII vvaalluueess ooff tthhee ggrroowwiinngg sseeaassoonn,, ((cc)) tthhee aammpplliittuuddee ooff tthhee ggrroowwiinngg sseeaassoonn bbeetwtweeenenm maxaixmimumuman danmdi nmiminuimmuNmD VNID,(VdI),t h(de)s ttahned asrtdanddeavrida tidoenvoiaftNioDnV oIfo vNeDrVthIe ogvroewr itnhge sgeraoswoningan sdea(seo)nt haneda r(ee)a thuen dareerat uhnedceurr tvhee (cAuUrvCe) (AfrUomC) tfhreomst athrte tsotatrht etoe tnhde eonfdth oef tsheea ssoenas(oFnig (Fuirgeu2r)e. T2h).e Tghreo wgrionwgisnega ssoenaswoans wdeafis ndeedfinasedst aarst isntagrotinngJu olina nJudliaayn9 d1a(yA p91ri l(A1sptr,iol r1Mst,a orcrh M31asrtcho n31lesat pony elaerasp) aynedaresn) danindg eonndJinugli aonn dJuaylia3n0 4d(aOy c3t0o4b e(rO3c1tostb,eorr 3O1sctt,o obre rO3c0tothbeinr 3le0athp iyne aleras)pb yaesaerds)o bnatsheedi onnit itahler einsuitlitasl frreosmultTsI fMroEmSA TTIM[6E8S].AT [68]. Figure 2. The normalized difference vegetation index (NDVI) phenological metrics for the entire Figure 2. The normalized difference vegetation index (NDVI) phenological metrics for the entire growing season. The phenological metrics are statistical descriptors of the NDVI trajectory of a pixel. growingseason.ThephenologicalmetricsarestatisticaldescriptorsoftheNDVItrajectoryofapixel. 2.4. Training and Testing Data 2.4. TrainingandTestingData Reference pixels for algorithm training (calibration) and testing (accuracy assessment) were Reference pixels for algorithm training (calibration) and testing (accuracy assessment) were randomly selected across the study area (Figure 3). In Google EarthTM, high-resolution images from randomlyselectedacrossthestudyarea(Figure3). InGoogleEarthTM,high-resolutionimagesfrom 2016 clearly showed typical indicators of land abandonment, such as advanced shrub encroachment, 2016clearlyshowedtypicalindicatorsoflandabandonment,suchasadvancedshrubencroachment, which supported the labeling process (Figure 4). whichsupportedthelabelingprocess(Figure4). RemoteSens.2018,10,159 7of24 Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 25 Remote Sens. 2018, 10, x FOR PEER REVIEW 7 of 25 FigurFeig3u.reL 3o. cLaotcioatniono foft rtraaiinniinngg ((rreedd) )anadn dvalvidaalitdioant i(ognree(ng)r epeixne)lsp foixre dlestefromridnientge rambainndinogneadb vasn. adcotinvee d vs. Figure 3. Location of training (red) and validation (green) pixels for determining abandoned vs. active activecrcorpolpalnadn. d. cropland. Figure 4. Abandoned (left) and active cropland (right) MODIS pixels (red squares). The graphs show Figure 4. Abandoned (left) and active cropland (right) MODIS pixels (red squares). The graphs show Figurtehe4 .mAebana nndoromnaeldiz(elde fdti)ffaenrednacec tvievgeectarotiponla inndde(xr i(gNhDt)VMI) oOf DalIlS acptiivxee lasn(dr eadbasnqduoanreeds )r.eTfehreengcrea ppixheslss how the mean normalized difference vegetation index (NDVI) of all active and abandoned reference pixels themeannormalizeddifferencevegetationindex(NDVI)ofallactiveandabandonedreferencepixels (dashedsignatures)andstandarddeviations(dottedlines).BoldlinesrepresenttheNDVIsignatures o fthetwoselectedreferencepixels(Source:GoogleEarthTM2016). RemoteSens.2018,10,159 8of24 ToassigntheclassesfortheselectedMODISpixels,weusedthefollowingsteps. First,forseveral regions(Karakalpakstan,Kyzyl-OrdaandFergana),non-differentialGPSgrounddataofabandoned fieldswereavailablefordifferentyears(2008,2009and2014)[7,8,70–72]. Thisinformationwasused jointlywithhigh-resolutionimagesavailableviaGoogleEarthTMandMODISNDVItime-seriesprofiles toassistintheassignmentofclassesfortrainingdata. Phenologicalsignaturesofabandonedfields werecharacterizedbysmoother,bell-shaped,temporalNDVIsignatures,withNDVIvaluesgenerally below0.2–0.3duetolowbiomassproductionforsemi-naturalsuccessionvegetationindrylands[7]. Incontrast,activecroplandresultedinNDVItemporalprofileswithsubstantiallysmallergrowing seasonNDVIintegralsandahigherNDVIvalueduringthepeakofvegetationgrowththanthoseof abandonedplots(Figure2)[73]. UsingGoogleEarthTMtocreateandvalidatemapsofabandonment andotherlandcoverwasalsoreportedinotherstudies[29,30,35,74,75]. Only pixels with a single dominant land-cover class of at least 85% abundance in the Google EarthTMimageryfrom2016(activeorabandonedirrigatedcropland)wereretained. Abufferofhalf aMODISpixelwasconsideredtoaccountforthepossibleeffectsoftheMODISlarge-pointspread function[76,77]. Toreducethespatialautocorrelation,aminimumdistanceof1.5kmbetweenpixels wasensured. In total, 7960 reference samples (pixels) of “abandoned vs. active cropland” were randomly selected,withapprox.50%foreachclass.Approximatelyone-halfofthereferencepixelswasrandomly splitandusedfortheaccuracyassessment(4030),whiletheotherhalf(3930)wasusedastrainingdata tocalibrate/classifyactiveandabandonedcropland. 2.5. AncillaryData Anexistingcroplandmapforthestudyarea[71]wasusedtomaskoutareaswherecropland abandonmentdidnotoccur(e.g., unmanaged, naturallandcover). Themapdepictsthecropland extent of the region of interest for the period before 2004, which coincided with the onset of the analysis [71]. The overall accuracy of the cropland map, measured with an independent, random sampleof5185croplandvs. non-croplandtestpixels,was89.8%,whereastheproducer’saccuracyand user’saccuracyfortheclass“cropland”were92.1%and88.2%,respectively. Theproducer’saccuracy and user’s accuracy for the class “non-cropland” were 87.5% and 91.6%, respectively. The area of cropland(includingboth,usedandunused)inthatmapamountsto9.1Mha,similartootherstudies andstatistics[52,78]. AdministrativeboundariesfromtheGADMdatabaseofGlobalAdministrativeAreas,version2.5 (http://www.gadm.org/), provided the basis for the stratification (Section 3.1). This database subdividesthestudyareaintoprovinces,referredtoasoblastsinRussian. Oblastsareprovince-level administrativeunits,equivalenttotheNUTS-3levelintheEuropeanUnion. Intotal,39provincesthat correspondtothe“oblast”administrativelevel2intheformerSovietUnioncoverthestudyregion. TheGlobalAgro-EcologicalZones(GAEZ)dataset,version3.0.,whichisbasedontheHarmonized WorldSoilDatabase(HWSD)andclimatedatafor1961–1990[79,80],wastakenfromtheFoodand AgricultureOrganization(FAO).Itprovidesadescriptionoftheenvironmentalcharacteristicsofa regionandthecropsuitabilityindexforseveralcroptypes(cotton,wheatandrice,whicharethemajor croptypesintheASB). 2.6. MappingAbandonedCropland The mapping of cropland abandonment involved two stages (Figure 5): (i) a per stratum classification of abandoned cropland following a stratified classifier and (ii) a fusion of the most accuratestratum-specificresultsbasedonpixel-levelclassmemberships. RemoteSens.2018,10,159 9of24 Remote Sens. 2018, 10, x FOR PEER REVIEW 9 of 25 Figure 5. Scheme showing the workflow for mapping abandoned cropland using the stratified Figure5.Schemeshowingtheworkflowformappingabandonedcroplandusingthestratifiedclassifier classifier (Section 3.1). The skewed rectangles represent input and output data sets, whereas ellipses (Section3.1).Theskewedrectanglesrepresentinputandoutputdatasets,whereasellipsesrepresent represent analytical steps. analyticalsteps. Because of the agro-ecological gradients and the variety of management practices in the ASB, Becauseoftheagro-ecologicalgradientsandthevarietyofmanagementpracticesintheASB, spectral signatures varied spatially and could lower the recognition ability by a single global spectralsignaturesvariedspatiallyandcouldlowertherecognitionabilitybyasingleglobalclassifier. classifier. The study area, therefore, was stratified according to administrative boundaries (Section Thestudyarea,therefore,wasstratifiedaccordingtoadministrativeboundaries(Section2.5),assuming 2.5), assuming that they would either (i) tend to separate irrigation systems and thus follow the agro- that they would either (i) tend to separate irrigation systems and thus follow the agro-ecological ecological boundaries in some cases, or in others, (ii) provide finer spatial units of environmental boundaries in some cases, or in others, (ii) provide finer spatial units of environmental zonation. zonation. A buffer zone of 100 km was assumed to minimize boundary artifacts due to the stratum- A buffer zone of 100 km was assumed to minimize boundary artifacts due to the stratum-specific specific training. A non-stratified classifier was used as a benchmark, i.e., all training pixels were training. A non-stratified classifier was used as a benchmark, i.e., all training pixels were used to used to calibrate a global classifier model. calibrateaglobalclassifiermodel. The classification approach (for both, with and without stratification) consisted of mapping The classification approach (for both, with and without stratification) consisted of mapping abandoned cropland by using two classifier algorithms, random forest (RF) [81] and supported vector abandonedcroplandbyusingtwoclassifieralgorithms,randomforest(RF)[81]andsupportedvector machines (SVM) [36]. In previous studies, both algorithms demonstrated a good ability to create machines (SVM) [36]. In previous studies, both algorithms demonstrated a good ability to create accurate LULCC maps [36,82–85], specifically abandonment maps [19,29,30,33]. RF is an ensemble of accurateLULCCmaps[36,82–85],specificallyabandonmentmaps[19,29,30,33]. RFisanensembleof decision trees (DTs) that were trained based on random, bootstrapped samples of the training data, decisiontrees(DTs)thatweretrainedbasedonrandom,bootstrappedsamplesofthetrainingdata, which gave this algorithms its name [81]. DTs are non-parametric, hierarchical classifiers that predict whichgavethisalgorithmsitsname[81]. DTsarenon-parametric,hierarchicalclassifiersthatpredict class membership by recursively partitioning datasets into increasingly homogeneous, mutually class membership by recursively partitioning datasets into increasingly homogeneous, mutually exclusive subsets via a branched system of data splits [86]. In contrast to other classifier algorithms, exclusivesubsetsviaabranchedsystemofdatasplits[86]. Incontrasttootherclassifieralgorithms, which use the whole feature space at once and make a single membership decision, SVMs [87] only whichusethewholefeaturespaceatonceandmakeasinglemembershipdecision,SVMs[87]only require the most informative samples to make the class decision [88] and they are relatively requirethemostinformativesamplestomaketheclassdecision[88]andtheyarerelativelyinsensitive insensitive to high-dimensional datasets [89]. SVMs are based on the notion of separating classes into tohigh-dimensionaldatasets[89]. SVMsarebasedonthenotionofseparatingclassesintoahigher a higher dimensional features (Hilbert) space by fitting an optimal separating hyperplane (OSH) dimensionalfeatures(Hilbert)spacebyfittinganoptimalseparatinghyperplane(OSH)betweenthem, between them, focusing on those training samples that lie at the edge of the class distributions, the focusingonthosetrainingsamplesthatlieattheedgeoftheclassdistributions,theso-calledsupport so-called support vectors [90]. Despite their high accuracies, RF and SVM might result in vectors[90]. Despitetheirhighaccuracies,RFandSVMmightresultincomplementaryresults,which complementary results, which can be overcome by decision fusion [7,36,91,92]. canbeovercomebydecisionfusion[7,36,91,92]. During the classification process, subsets of features were randomly generated from the full Duringtheclassificationprocess,subsetsoffeatureswererandomlygeneratedfromthefullinput input data set, i.e., 50% of the 448 features (6 annual NDVI metrics plus 26 annual NDVI values per dataset,i.e.,50%ofthe448features(6annualNDVImetricsplus26annualNDVIvaluespergrowing growing season from 2003–2016, see Section 2.3). seasonfrom2003–2016,seeSection2.3). The random generation was repeated 10 times (10 per RF and 10 per SVM), which resulted in 20 The random generation was repeated 10 times (10 per RF and 10 per SVM), which resulted maps of abandoned vs. active cropland. These 20 maps were fused at the per stratum level, resulting in 20 maps of abandoned vs. active cropland. These 20 maps were fused at the per stratum level, in one map per stratum, similar to Löw et al. [36]. The selection of input features (we tested 10%, 20%, r…es,u 1l0ti0n%g)i nanodn enummabpepr eorf sittreartautimon,ssi (mwiela tretsoteLdö 1w0,e 2t0a,l .5[03 a6n].dT 1h0e0s ietleercattiioonnso)f winapsu atsfseeastsuerde se(mwpeirtiecsatleldy and confirmed by similar studies using random feature selection [36,93]. The fusion considers the probabilistic a-posteriori values estimating class membership at the pixel level by the RF [94] and the SVM [95]. Depending on the algorithm, the way these ‘‘softened’’ RemoteSens.2018,10,159 10of24 10%,20%,... ,100%)andnumberofiterations(wetested10,20,50and100iterations)wasassessed empiricallyandconfirmedbysimilarstudiesusingrandomfeatureselection[36,93]. Thefusionconsiderstheprobabilistica-posteriorivaluesestimatingclassmembershipatthepixel levelbytheRF[94]andtheSVM[95]. Dependingonthealgorithm,thewaythese“softened”outputs arecalculateddifferfromeachother: intheRFframework,itisdefinedasthenumberoftreesinthe RFensemblevotingforthefinalclass[94],inSVMclassification,itisbasedonthedistancesofthe samplestotheOSHinthefeaturespace[95,96]. Previousstudiesfoundthathigh(low)a-posteriori valuesfrombothalgorithmsarecorrelatedwithcorrectly(incorrectly)classifiedtestpixelsandare comparablewitheachother[94–96]. Further,thedecisionfusionassessesthereliabilityofeachmap basedonitsper-classaccuracyandaccordingtothemethodof[36]. ThenumberoftreesintheRFwassetto500becauseahighernumberdidnotincreaseaccuracyor thenumberofrandomsplitvariablestothesquarerootofthenumberofinputvariables[83]. Training oftheSVMincludeschoosingthekernelparameterγandtheregularizationparameterC[97],which wasdoneusingasystematicgridsearchin2-DspacethatisspannedbyγandC,usingathreefold cross-validation. Therangeofγwas[0.00125,10];therangeofCwasfinallysetto[1,200]. Thewidely usedradialbasisfunction(RBF)kernelwasselectedinthisstudysincelinearorpolynomialkernels weretestedbutresultedinloweraccuracies(notreportedhere). Thedelineationofa100km-bufferaroundthestrataresultedinanoverlapofthestratum-specific maps. Therefore,themapswerefusedbyusingtheper-pixelclassmembershipsfromtheRFandSVM algorithms. Foreachpixelintheoverlappingregionsofthestrata,severalpossibleclassoutputswere combinedbyassigningweightstotheclassdecisionofeachmethodinproportiontoitscorresponding classification accuracy per stratum. The decision of a method t is defined as d ∈ {0,1}, with t,j t =1,...,Tandclassj =1,...,C,whereTisthenumberofmethodsorclassifiersandCisthenumber ofclasses(here: 2). Iftchoosesclassω ,thend =1and0otherwise[92]. Thefinalclassificationis j t,j thendeterminedbythefollowing: ∑ω d = maxC ∑ω d (1) t t,J J=1 t t,j t=1 t=1 that is, if the total weighted vote received by ω is higher than the total weighted vote received j by any other class. Weights ω to t are defined by the overall classification accuracy of t. In areas t withoutoverlap,afusionwasnotpossibleandthefinalclasscorrespondedtothestratum-specific classificationavailable. 2.7. AccuracyAssessment Theaccuracyofthemapswassystematicallyassessedwithanindependentsubsetofthereference dataset (Section 2.4). For each active vs. abandoned map, a confusion matrix was calculated at the province level [98,99] and included the overall accuracy, user’s accuracy and producer’s accuracy. Asrecommended[100],theoverallaccuracymeasureswerereportedusing95%confidence intervals[101]. Theconfidenceinterval(CI)ofthedifference(inequality)inaccuracyvaluesbetween twoclassifieralgorithmsisgivenasfollows: p1−p0±zα/2SEp1−p0 (2) whereSEp1−p0 isthestandarderrorofthedifferencebetweentwoestimatedproportionswithz=1.96 andα=0.05.Thevaluesp andp aretheproportionsofcorrectlyclassifiedtestpixelsoftwoclassifiers 1 0 undercomparison. Inaddition,receiveroperatingcharacteristic(ROC)curvesandthecorresponding AUC have been calculated; the AUC is an increasingly used accuracy metric in machine-learning and data mining [102–104]. The AUC ranges from 0–100%, with 100% representing an error-free classification. AsarandomclassificationyieldsanAUCof50%,norealisticclassificationshouldhave

Description:
www.mdpi.com/journal/remotesensing Proportion Abandoned. 95% Confidence Interval. Uzbekistan. Andijon. 0.05.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.